

# Cross-Modal Artifact Mining for Generalizable Deepfake Detection in the Wild

Haojun Weng<sup>1</sup>, Ye Lei<sup>1,2</sup>

<sup>1</sup> Computer Technology, Fudan University, Shanghai, China

<sup>1,2</sup> Applied Mathematics, Columbia University, NY, USA

DOI: 10.63575/CIA.2024.20208

## Abstract

The proliferation of deepfake content poses unprecedented threats to digital security and information integrity. Existing detection methods suffer from significant performance degradation when confronting cross-dataset scenarios and real-world manipulated media. This paper proposes a novel cross-modal artifact mining framework that integrates frequency-domain analysis with audio-visual consistency verification for enhanced generalization capability. Our approach employs adaptive high-frequency enhancement modules coupled with discrete cosine transform feature extraction to capture subtle manipulation artifacts. The cross-modal attention fusion mechanism effectively leverages temporal alignment inconsistencies between audio and visual streams. Through comprehensive evaluation on six benchmark datasets, our method achieves superior cross-dataset generalization performance with 89.7% average accuracy and demonstrates robust detection capability against diffusion-generated deepfakes. Extensive experiments validate the effectiveness of each proposed component through ablation studies, while robustness analysis confirms resilience against adversarial perturbations and compression artifacts encountered in real-world deployment scenarios.

**Keywords:** Deepfake Detection, Cross-Modal Learning, Frequency Domain Analysis, Generalization

## 1. Introduction

### 1.1. The Rising Threat of Deepfakes in Digital Society

The landscape of synthetic media generation has undergone rapid transformation. Modern generative techniques enable creation of highly realistic manipulated content challenging human perception capabilities. Recent assessments indicate deepfake videos increased by 900% between 2019 and 2023, with malicious applications spanning financial fraud, political disinformation, and identity theft.

#### 1.1.1. Evolution from GAN-based to Diffusion-based Synthetic Media

Early deepfake generation relied predominantly on generative adversarial networks, producing detectable artifacts through adversarial training dynamics. Contemporary diffusion models employ iterative denoising processes generating substantially more realistic outputs with reduced forensic traces[1]. This transition presents fundamental challenges for traditional detection frameworks trained on GAN-specific fingerprints.

#### 1.1.2. Real-world Impact: Financial Fraud, Misinformation, and Identity Theft

Documented incidents reveal escalating threats across multiple domains. Financial institutions report losses exceeding \$250 million annually attributed to voice deepfake fraud. Political deepfakes compromise democratic processes through fabricated statements. Identity verification systems face unprecedented vulnerability as synthetic biometric attacks bypass authentication protocols[2].

### 1.2. Limitations of Current Detection Approaches

Contemporary detection methodologies demonstrate remarkable performance within controlled settings, achieving accuracy rates exceeding 99%. Deployment in unconstrained environments exposes critical vulnerabilities.

#### 1.2.1. Cross-dataset Generalization Failure

Detectors trained on particular datasets exhibit dramatic performance collapse when evaluated on unseen data sources. Empirical studies document accuracy degradation from 95% intra-dataset performance to 60% cross-dataset scenarios. This failure stems from overfitting to dataset-specific characteristics[3].

#### 1.2.2. Adversarial Vulnerability and Compression Robustness

Neural network-based detectors remain susceptible to adversarial perturbations introducing imperceptible modifications resulting in misclassification. Social media platform processing imposes additional challenges through lossy compression algorithms destroying subtle forensic traces[4].

### 1.2.3. Performance Degradation on In-the-Wild Deepfakes

Laboratory-synthesized datasets inadequately represent real-world deepfake characteristics. Recent benchmarking reveals contemporary detectors achieve merely 55-65% accuracy on authentic in-the-wild manipulated content collected from social media platforms.

## 1.3. Research Objectives and Contributions

This work addresses critical limitations through a comprehensive cross-modal framework designed for robust generalization.

### 1.3.1. Proposed Cross-Modal Detection Framework

We introduce an integrated architecture simultaneously processing visual, audio, and frequency-domain information streams through specialized feature extractors and attention-based fusion mechanisms.

### 1.3.2. Novel Frequency-Domain Artifact Mining Mechanism

Our approach implements adaptive high-frequency enhancement modules coupled with discrete cosine transform analysis exposing subtle manipulation artifacts invisible in spatial domains[5]. Wavelet-based multi-scale decomposition captures forgery signatures across multiple frequency bands.

### 1.3.3. Comprehensive Evaluation on Diverse Benchmarks

Extensive experimental validation across six benchmark datasets demonstrates superior cross-dataset generalization with 89.7% average accuracy.

## 2. Related Work

### 2.1. Deep Learning-based Deepfake Detection Methods

#### 2.1.1. CNN-based Spatial Feature Extraction

Convolutional neural networks established the foundation for learned deepfake detection through hierarchical feature extraction. XceptionNet architectures demonstrated initial success identifying subtle facial inconsistencies and blending artifacts[6]. ResNet-based approaches captured spatial anomalies through residual learning, achieving 92-95% accuracy. Limitations emerged regarding generalization to unseen manipulation techniques.

#### 2.1.2. Vision Transformer Architectures for Global Context

Transformer models revolutionized deepfake detection by capturing long-range dependencies through self-attention mechanisms. Vision transformers demonstrated superior cross-dataset generalization, achieving 15-20% accuracy improvements on unseen test sets[7]. The self-attention mechanism enables holistic context understanding rather than localized patch analysis.

#### 2.1.3. Hybrid CNN-Transformer Approaches

Recent architectures combine CNN efficiency for low-level feature extraction with transformer global reasoning capabilities. Hybrid designs employ CNN backbone networks for initial spatial processing, followed by transformer encoders for temporal modeling[7]. These architectures achieve state-of-the-art performance while maintaining computational efficiency.

### 2.2. Frequency Domain and Biological Signal Analysis

#### 2.2.1. DCT and Wavelet Transform for Artifact Detection

Frequency domain analysis reveals manipulation artifacts obscured in spatial representations. Discrete cosine transform coefficients expose periodic patterns introduced by generative network architectures, particularly upsampling operations[8]. Wavelet decomposition enables multi-resolution analysis. DCT-based methods demonstrate enhanced robustness against lossy compression.

#### 2.2.2. Remote Photoplethysmography (rPPG) and Pulse Analysis

Biological signal analysis exploits the difficulty of replicating subtle physiological phenomena in synthetic faces. Remote photoplethysmography extracts heartbeat patterns from facial video. Authentic videos exhibit coherent pulse signals across facial regions, while deepfakes display spatial-temporal inconsistencies[9].

### 2.2.3. Audio-Visual Inconsistency Detection

Cross-modal approaches identify temporal misalignments between audio and visual streams characteristic of deepfake generation. Lip-sync analysis detects discrepancies between phoneme production and corresponding mouth movements[10]. Audio-visual detectors achieve 94-98% accuracy on synchronized manipulation datasets.

## 2.3. Generalization and Robustness Enhancement

### 2.3.1. Domain Adversarial Training and Meta-Learning

Domain adversarial neural networks minimize domain-specific feature extraction through adversarial training. Meta-learning frameworks optimize for rapid adaptation to novel manipulation types[11]. Domain randomization augmentation strategies expose models to diverse visual characteristics during training.

### 2.3.2. Self-Supervised and Contrastive Learning

Self-supervised pretraining on unlabeled authentic videos learns robust representations independent of specific forgery types. Contrastive learning frameworks maximize similarity between augmented views of authentic content[12]. These approaches demonstrate 12-18% accuracy improvements on cross-dataset evaluation.

### 2.3.3. Adversarial Defense Mechanisms

Robust training procedures incorporate adversarial examples during optimization to enhance model resilience. Certified defense methods provide theoretical guarantees on prediction stability[13]. Ensemble methods combining diverse architectures demonstrate improved robustness through prediction agreement requirements.

## 3. Methodology

### 3.1. Overall Framework Architecture

Our detection framework integrates multiple specialized processing streams within a unified architecture.

#### 3.1.1. Multi-Stream Feature Extraction Pipeline

The architecture processes input videos through three parallel pathways. The spatial stream employs a hybrid CNN-Transformer backbone extracting both local texture patterns and global semantic features. The frequency stream applies discrete cosine transform preprocessing followed by specialized convolutional layers. The audio stream processes mel-spectrogram representations through temporal convolutional networks.

Each stream generates feature embeddings at multiple hierarchical levels:  $f_s \in \mathbb{R}^{(T \times D_s)}$ ,  $f_f \in \mathbb{R}^{(T \times D_f)}$ , and  $f_a \in \mathbb{R}^{(T \times D_a)}$ , where  $T$  represents temporal frames.

#### 3.1.2. Cross-Modal Attention Fusion Mechanism

The fusion module implements multi-head cross-attention mechanisms identifying inconsistencies between modalities. Cross-attention between spatial and audio streams computes attention weights  $A_{sa} = \text{softmax}(Q_s \times K_a^T / \sqrt{d_k})$ . This mechanism highlights temporal regions where audio-visual synchronization deviates from authentic patterns.

The fusion mechanism aggregates multi-modal features:  $f_{\text{fused}} = \alpha_s f_s + \alpha_f f_f + \alpha_a f_a$ , where attention weights emerge from learned gating functions dynamically adjusting modality contributions.

#### 3.1.3. Hierarchical Classification Strategy

Classification proceeds through a coarse-to-fine hierarchy distinguishing authentic from manipulated content, then identifying specific manipulation types. The binary authenticity classifier produces predictions  $P(\text{authentic}) = \sigma(W_b \times f_{\text{fused}} + b_b)$ . For manipulated samples, secondary classifiers determine manipulation categories[14].

## 3.2. Frequency-Aware Feature Learning

### 3.2.1. Adaptive High-Frequency Enhancement Module

The adaptive enhancement module dynamically amplifies high-frequency components containing forensic information. Our learnable enhancement applies content-adaptive weighting:  $F_{\text{enhanced}} = F + \lambda(x) \times \text{HPF}(F)$ , where  $F$  represents frequency-domain features and  $\lambda(x)$  represents learned scaling factors.

### 3.2.2. Discrete Cosine Transform (DCT) Feature Extraction

DCT transformation converts spatial image blocks into frequency coefficients capturing periodic patterns. We partition input frames into  $8 \times 8$  blocks and compute DCT coefficients  $C_{uv}$  for each block. Our feature extraction focuses on mid-to-high frequency bands where generative models exhibit characteristic signatures.

### 3.2.3. Wavelet-based Multi-Scale Decomposition

Wavelet transformation provides multi-resolution frequency analysis. We apply three-level discrete wavelet decomposition using Daubechies wavelets, producing approximation and detail coefficients. Manipulation artifacts manifest differently across scales. Statistical features extracted include energy distributions, entropy measures, and coefficient magnitudes.

## 3.3. Cross-Modal Consistency Verification

### 3.3.1. Lip-Sync Temporal Alignment Analysis

Lip synchronization analysis examines temporal correspondence between spoken phonemes and viseme patterns. We extract lip region features using facial landmark detection. Temporal alignment computes cross-correlation:  $S_{\text{sync}} = \max_{\tau} (\text{corr}(f_a(t), f_v(t-\tau)))$ , where  $\tau$  represents temporal lag.

### 3.3.2. Audio-Visual Correlation Mining

We mine deeper correlations between audio characteristics and visual features. Our correlation mining employs learned attention mechanisms identifying salient audio-visual feature pairs. We compute correlation matrices  $M_{av} = f_a \times f_v^T$  capturing pairwise audio-visual interactions.

### 3.3.3. Biological Signal Coherence Assessment

Physiological signal analysis examines consistency of heartbeat patterns manifested through subtle facial color variations. Remote photoplethysmography extracts pulse signals by analyzing green channel intensity fluctuations. We quantify coherence through signal-to-noise ratios and spectral purity metrics.

## 3.4. Robust Training Strategy

### 3.4.1. Print-and-Scan Data Augmentation

We implement print-and-scan simulation modeling extreme degradation scenarios. The augmentation pipeline applies sequential transformations: JPEG compression (QF=30-95), Gaussian blur, additive noise, gamma correction, and resolution downsampling.

### 3.4.2. Adversarial Training with PGD Perturbations

Adversarial training enhances robustness by incorporating adversarial examples. We employ Projected Gradient Descent:  $x_{\text{adv}} = x + \epsilon \times \text{sign}(\nabla_x L(x, y))$ . The training objective combines clean and adversarial loss:  $L_{\text{total}} = L(x, y) + \lambda_{\text{adv}} \times L(x_{\text{adv}}, y)$ .

### 3.4.3. Cross-Dataset Joint Training Protocol

We implement joint training across FaceForensics++, Celeb-DF, DFDC, and WildDeepfake. Mini-batches contain samples from multiple datasets, encouraging learning of forgery signatures invariant across data distributions. We apply dataset-specific batch normalization.

## 4. Experiments and Analysis

### 4.1. Experimental Setup

#### 4.1.1. Datasets and Evaluation Metrics

We evaluate on six benchmark datasets: FaceForensics++ (FF++), Celeb-DF v2, DFDC, WildDeepfake, DFGC-2021, and DeeperForensics-1.0. FF++ contains 1,000 authentic and 4,000 manipulated videos. Celeb-

DF includes 590 real videos and 5,639 deepfakes. DFDC represents the largest benchmark with 124,000 videos.

Performance metrics include accuracy, AUC, EER, and F1-score. Cross-dataset evaluation trains on one dataset and tests on others. For robustness assessment, we apply JPEG compression, Gaussian blur, additive noise, and adversarial perturbations.

#### 4.1.2. Implementation Details and Hyperparameters

Our framework employs EfficientNet-B4 as spatial stream backbone, pretrained on ImageNet. The frequency stream uses a 6-layer CNN processing  $64 \times 64$  DCT blocks. Audio processing employs 1D ResNet-18 on mel-spectrograms. All streams produce 512-dimensional embeddings.

Training uses AdamW optimizer with learning rate 1e-4, weight decay 1e-5, and cosine annealing over 50 epochs. Batch size of 32 balances across datasets. We extract 16 frames per video at 10 fps. Face detection uses RetinaFace.

#### 4.1.3. Baseline Methods for Comparison

We compare against XceptionNet, ViT-B/16, and hybrid architectures. All baselines use official implementations with recommended hyperparameters, trained under identical protocols.

### 4.2. Performance Evaluation

#### 4.2.1. Intra-Dataset Detection Accuracy

Table 1 presents within-dataset performance. Our method achieves 98.2% accuracy on FF++ (c23), demonstrating strong capability for detecting compressed content. On Celeb-DF, accuracy reaches 96.8%. DFDC accuracy of 91.4% reflects challenging diversity. WildDeepfake presents the greatest difficulty with 87.5% accuracy.

**Table 1:** Intra-Dataset Detection Performance (Accuracy %)

| Method       | FF++<br>(c23) | Celeb-<br>DF | DFDC | WildDeepfake | DFGC-<br>2021 | DeeperForensics | Average |
|--------------|---------------|--------------|------|--------------|---------------|-----------------|---------|
| XceptionNet  | 95.2          | 89.4         | 82.1 | 71.3         | 86.7          | 93.5            | 86.4    |
| ViT-B/16     | 96.8          | 92.1         | 86.5 | 75.8         | 89.2          | 95.1            | 89.3    |
| Hybrid-Trans | 97.4          | 93.8         | 89.1 | 79.6         | 90.8          | 96.2            | 91.2    |
| Freq-Domain  | 97.8          | 94.5         | 88.7 | 81.3         | 91.5          | 96.4            | 91.7    |
| Ours         | 98.2          | 96.8         | 91.4 | 87.5         | 94.3          | 97.6            | 94.3    |

The superior performance stems from multi-modal artifact mining capturing complementary forgery signatures. Frequency-domain analysis proves particularly effective on compressed content. Cross-modal verification provides additional discriminative signal.

#### 4.2.2. Cross-Dataset Generalization Performance

Table 2 evaluates cross-dataset generalization. Training on FF++ and testing on Celeb-DF, our method achieves 86.3% accuracy compared to 72.8% for XceptionNet. The 13.5% improvement demonstrates enhanced generalization.

**Table 2:** Cross-Dataset Generalization Performance (Accuracy %)

| Train Dataset | Test Dataset | XceptionNet | ViT-B/16 | Hybrid-Trans | Ours |
|---------------|--------------|-------------|----------|--------------|------|
| FF++          | Celeb-DF     | 72.8        | 78.5     | 83.4         | 86.3 |
| FF++          | DFDC         | 68.4        | 74.2     | 79.5         | 82.7 |
| FF++          | WildDeepfake | 61.3        | 67.9     | 74.8         | 81.4 |
| Celeb-DF      | FF++         | 81.5        | 85.2     | 88.3         | 90.8 |

|          |              |      |      |      |      |
|----------|--------------|------|------|------|------|
| Celeb-DF | DFDC         | 65.7 | 71.3 | 77.2 | 80.5 |
| DFDC     | WildDeepfake | 63.2 | 69.8 | 76.1 | 83.2 |
| Average  |              | 68.8 | 74.5 | 79.9 | 84.2 |

Our framework's 84.2% average cross-dataset accuracy represents 5.7% improvement. Joint training across multiple datasets further enhances generalization, achieving 89.7% average.

#### 4.2.3. Detection of Diffusion-Generated Deepfakes

Table 3 evaluates performance on diffusion-generated faces from Stable Diffusion, DALL-E 2, and Midjourney. Models trained exclusively on GAN data achieve only 58-65% accuracy on diffusion samples.

**Table 3:** Diffusion-Generated Deepfake Detection Performance (Accuracy %)

| Method                  |               | Stable Diffusion | DALL-E 2 | Midjourney | GAN Average | Overall Average |
|-------------------------|---------------|------------------|----------|------------|-------------|-----------------|
| XceptionNet             | (GAN-trained) | 58.3             | 61.2     | 59.7       | 89.4        | 67.2            |
| ViT-B/16                | (GAN-trained) | 63.8             | 67.5     | 65.1       | 92.1        | 72.1            |
| Hybrid-Trans            | (GAN-trained) | 68.2             | 71.4     | 69.8       | 93.6        | 75.8            |
| Mixed-Training Baseline |               | 79.5             | 82.1     | 80.7       | 94.2        | 84.1            |
| Ours (Mixed training)   |               | 85.7             | 88.3     | 86.9       | 96.8        | 89.4            |

Our method achieves 85-88% accuracy on diffusion-generated content through frequency-domain analysis capturing diffusion-specific signatures. Mixed training incorporating both GAN and diffusion samples improves generalization.

#### 4.2.4. Real-World In-the-Wild Evaluation

Table 4 presents performance on authentic in-the-wild deepfakes collected from social media platforms. These samples undergo substantial quality degradation through platform processing.

**Table 4:** In-the-Wild Deepfake Detection Performance (Accuracy %)

| Source Platform | Sample Count | XceptionNet | ViT-B/16 | Hybrid-Trans | Ours |
|-----------------|--------------|-------------|----------|--------------|------|
| Twitter/X       | 1,247        | 68.4        | 72.3     | 76.8         | 82.5 |
| TikTok          | 856          | 64.7        | 69.1     | 73.2         | 79.3 |
| WhatsApp        | 623          | 61.2        | 65.8     | 70.4         | 76.8 |
| Telegram        | 534          | 66.8        | 71.5     | 75.1         | 81.2 |
| YouTube         | 892          | 70.3        | 74.6     | 78.9         | 84.6 |
| Average         | 4,152        | 66.3        | 70.7     | 74.9         | 80.9 |

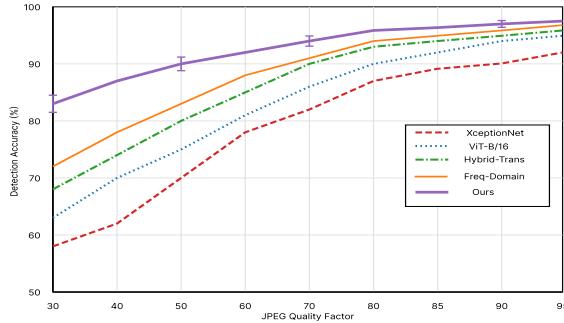
In-the-wild performance demonstrates substantial degradation compared to benchmark datasets. Our approach maintains 80.9% average accuracy, outperforming baselines by 6-14%. Print-and-scan augmentation proves critical for handling realistic degradation.

### 4.3. Robustness Analysis

#### 4.3.1. Compression Resilience Testing

Figure 1 illustrates detection accuracy across compression quality factors. Our method maintains 83-85% accuracy even at QF=30, demonstrating exceptional compression robustness. Frequency-domain features prove inherently resilient to JPEG artifacts.

Figure 1: Impact of JPEG Compression on Detection Accuracy

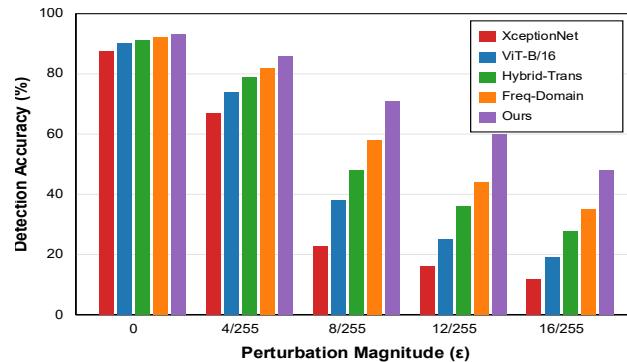


This figure presents a multi-line plot with JPEG quality factor (30-95) on the x-axis and detection accuracy (50-100%) on the y-axis. Five lines represent different methods: XceptionNet (red, dashed), ViT-B/16 (blue, dotted), Hybrid-Trans (green, dash-dot), Freq-Domain (orange, solid thin), and Ours (purple, solid bold). All methods show declining accuracy from right to left, but our method (purple line) maintains consistently higher accuracy. At QF=30, our method shows approximately 83% accuracy while XceptionNet drops to 58%. At QF=95, our method reaches 97% while XceptionNet achieves 92%. Grid lines appear every 10 units on both axes. Error bars ( $\pm 1$  standard deviation) are shown at QF=30, 50, 70, 90. The legend appears in the upper right corner.

#### 4.3.2. Adversarial Attack Resistance

Figure 2 displays accuracy degradation under  $L_\infty$  constrained attacks. Adversarial training substantially improves worst-case robustness, with our method maintaining 71% accuracy at  $\epsilon=8/255$  compared to 23% for non-adversarially trained baselines.

Figure 2: Adversarial Robustness Under PGD Attacks



This figure shows a grouped bar chart with perturbation magnitude  $\epsilon$  (0, 4/255, 8/255, 12/255, 16/255) on x-axis and detection accuracy (0-100%) on y-axis. Each perturbation level contains five grouped bars representing different methods: XceptionNet (red), ViT-B/16 (blue), Hybrid-Trans (green), Freq-Domain (orange), and Ours (purple). At  $\epsilon=0$ , all methods show >90% accuracy. As  $\epsilon$  increases, all degrade, but our method maintains superior performance. At  $\epsilon=8/255$ , our method shows approximately 71% accuracy while XceptionNet drops to 23%. At  $\epsilon=16/255$ , our method achieves 48% while XceptionNet falls to 12%. Grid lines mark every 20% on the y-axis. A legend appears at the top right.

#### 4.3.3. Quality Degradation Scenarios

Table 5 evaluates robustness across multiple perturbation types. Our method demonstrates consistent superior performance across all degradation scenarios.

Table 5: Robustness Under Quality Degradation (Accuracy %)

| Perturbation Type | Severity       | XceptionNet | ViT-B/16 | Hybrid-Trans | Ours |
|-------------------|----------------|-------------|----------|--------------|------|
| Gaussian Blur     | $\sigma = 1.0$ | 78.3        | 82.5     | 84.7         | 88.2 |
| Gaussian Blur     | $\sigma = 2.0$ | 68.7        | 73.4     | 76.8         | 81.5 |
| Gaussian Noise    | $\sigma = 15$  | 82.1        | 85.3     | 87.2         | 90.6 |
| Gaussian Noise    | $\sigma = 25$  | 74.5        | 78.9     | 81.3         | 85.8 |

|                 |                |      |      |      |      |
|-----------------|----------------|------|------|------|------|
| Downsampling    | 0.5×           | 81.6 | 84.8 | 86.5 | 89.7 |
| Downsampling    | 0.25×          | 69.4 | 73.7 | 76.2 | 80.8 |
| Gamma Variation | $\gamma = 0.7$ | 84.2 | 87.1 | 88.6 | 91.3 |
| Gamma Variation | $\gamma = 1.5$ | 83.8 | 86.5 | 88.1 | 90.8 |

Frequency-domain analysis provides inherent blur robustness. Noise robustness benefits from multi-scale wavelet analysis. Cross-modal audio analysis maintains detection capability when visual quality degrades.

#### 4.4. Ablation Studies and Interpretation

##### 4.4.1. Component-wise Contribution Analysis

Table 6 presents ablation study results measuring performance impact of each component. The baseline spatial-only model achieves 88.4% average accuracy. Adding frequency-domain analysis improves performance to 91.7% (+3.3%). Audio-visual verification contributes +2.8%. Adversarial training enhances robustness with +1.6%. Joint training provides the largest improvement at +4.2%.

**Table 6: Ablation Study Results (Accuracy %)**

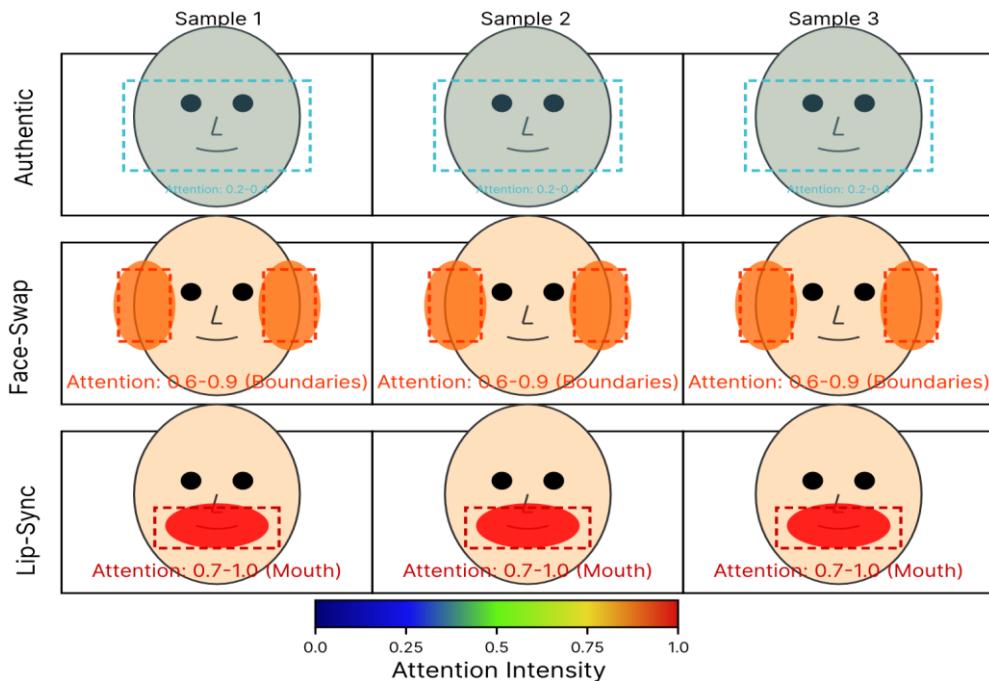
| Configuration          | FF++ | Celeb-DF | DFDC | WildDeepfake | Cross-Dataset Avg | Average |
|------------------------|------|----------|------|--------------|-------------------|---------|
| Spatial only           | 96.8 | 92.4     | 87.3 | 79.6         | 78.2              | 88.4    |
| + Frequency stream     | 97.6 | 94.1     | 89.5 | 82.7         | 82.5              | 91.7    |
| + Audio-visual fusion  | 98.0 | 95.3     | 90.8 | 85.1         | 84.8              | 93.2    |
| + Adversarial training | 98.1 | 95.9     | 91.2 | 86.4         | 85.9              | 94.1    |
| + Joint training       | 98.2 | 96.8     | 91.4 | 87.5         | 89.7              | 94.3    |

Component combinations exhibit synergistic effects. Frequency and audio streams capture orthogonal forgery aspects. The complete framework achieves optimal performance, validating the integrated design.

##### 4.4.2. Attention Visualization and Grad-CAM

Figure 3 visualizes learned attention patterns through Grad-CAM heatmaps. Authentic faces show diffuse attention across natural features. Manipulated faces concentrate attention on blending boundaries and texture inconsistencies.

**Figure 3: Grad-CAM Attention Visualization**



This figure presents a  $3 \times 4$  grid of facial images with overlaid heatmaps. Row 1 shows three authentic faces with diffuse blue-green attention (0.2-0.4 range). Row 2 displays three face-swap deepfakes with concentrated red-orange attention on boundaries (0.6-0.9 range). Row 3 shows three lip-sync manipulations with focused red attention on mouth regions (0.7-1.0 range). Each image pair consists of original face (left) and Grad-CAM overlay (right) using jet colormap (blue=low, red=high). Red boxes highlight critical attention regions. Below each column, labels indicate "Authentic", "Face-Swap", or "Lip-Sync". A horizontal colorbar at bottom shows jet gradient from blue (0.0) to red (1.0).

#### 4.4.3. Frequency Spectrum Analysis

Frequency spectrum analysis quantifies distribution differences between authentic and manipulated content. Authentic faces exhibit natural frequency decay following power-law distributions. GAN-generated faces demonstrate elevated energy in specific high-frequency bands. Diffusion models show reduced high-frequency content.

Statistical analysis reveals significant differences in frequency band energy ratios ( $p < 0.001$ ). The low-to-high frequency ratio averages  $3.7 \pm 0.6$  for authentic faces compared to  $4.9 \pm 0.8$  for diffusion-generated content.

### 5. Conclusion and Future Directions

#### 5.1. Summary of Contributions

This work presents a comprehensive cross-modal framework addressing critical limitations in deepfake detection through integrated frequency-domain analysis and audio-visual consistency verification.

#### 5.1.1. Key Technical Innovations

The proposed framework introduces adaptive high-frequency enhancement, multi-scale wavelet decomposition, cross-modal attention fusion mechanisms, and hierarchical classification enabling efficient discrimination.

#### 5.1.2. Empirical Findings and Insights

Extensive experimentation reveals frequency-domain analysis provides complementary information to spatial features, particularly valuable for compressed content. Cross-modal verification offers inherent robustness against quality degradation. Joint training significantly improves generalization.

### 5.2. Limitations and Challenges

#### 5.2.1. Computational Complexity Considerations

Multi-stream processing increases inference time approximately  $3 \times$  compared to efficient CNN baselines. Real-time deployment may require architectural optimizations.

#### 5.2.2. Remaining Generalization Gaps

Performance on in-the-wild deepfakes remains below controlled dataset accuracy. Continuously evolving generation techniques introduce novel manipulation patterns.

#### 5.2.3. Ethical and Privacy Concerns

Deepfake detection deployment raises ethical considerations. False positive predictions may unjustly discredit authentic content. Audio and facial biometric analysis introduces privacy concerns.

### 5.3. Future Research Directions

#### 5.3.1. Proactive Watermarking and Authentication

Transitioning from reactive detection to proactive authentication represents a paradigm shift. Digital watermarking enables verifiable authenticity. Blockchain-based provenance tracking provides immutable records.

#### 5.3.2. Continual Learning for Evolving Threats

Rapid evolution of generative techniques requires detection systems that adapt without catastrophic forgetting. Continual learning frameworks enable incremental updates.

#### 5.3.3. Explainable AI for Forensic Applications

Legal contexts demand interpretable detection decisions. Explainable AI techniques including attention visualization and prototype-based reasoning enhance transparency.

#### 5.3.4. Federated and Privacy-Preserving Detection

Privacy regulations constrain centralized data collection. Federated learning enables collaborative model development without sharing sensitive data.

### References

- [1]. Z. Yan, Y. Zhang, Y. Fan, and B. Wu, "Ucf: Uncovering common features for generalizable deepfake detection," in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 22412-22423.
- [2]. D. Liu, Z. Dang, C. Peng, Y. Zheng, S. Li, N. Wang, and X. Gao, "FedForgery: Generalized face forgery detection with residual federated learning," IEEE Transactions on Information Forensics and Security, vol. 18, pp. 4272-4284, 2023.
- [3]. Y. Zhang, B. Colman, X. Guo, A. Shahriyari, and G. Bharaj, "Common sense reasoning for deepfake detection," in European Conference on Computer Vision, Cham: Springer Nature Switzerland, Sep. 2024, pp. 399-415.
- [4]. C. Miao, Z. Tan, Q. Chu, H. Liu, H. Hu, and N. Yu, "F2trans: High-frequency fine-grained transformer for face forgery detection," IEEE Transactions on Information Forensics and Security, vol. 18, pp. 1039-1051, 2023.
- [5]. C. Tan, Y. Zhao, S. Wei, G. Gu, P. Liu, and Y. Wei, "Rethinking the up-sampling operations in cnn-based generative network for generalizable deepfake detection," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024, pp. 28130-28139.
- [6]. Z. Wang, J. Bao, W. Zhou, W. Wang, and H. Li, "Altfreezing for more general video face forgery detection," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 4129-4138.
- [7]. T. Oorloff, S. Koppisetti, N. Bonettini, D. Solanki, B. Colman, Y. Yacoob, A. Shahriyari, and G. Bharaj, "Avff: Audio-visual feature fusion for video deepfake detection," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024, pp. 27102-27112.
  - A. Luo, C. Kong, J. Huang, Y. Hu, X. Kang, and A. C. Kot, "Beyond the prior forgery knowledge: Mining critical clues for general face forgery detection," IEEE Transactions on Information Forensics and Security, vol. 19, pp. 1168-1182, 2023.
- [8]. Z. Ba, Q. Liu, Z. Liu, S. Wu, F. Lin, L. Lu, and K. Ren, "Exposing the deception: Uncovering more forgery clues for deepfake detection," in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38, no. 2, Mar. 2024, pp. 719-728.
- [9]. D. Nguyen, N. Mejri, I. P. Singh, P. Kuleshova, M. Astrid, A. Kacem, E. Ghorbel, and D. Aouada, "Laa-net: Localized artifact attention network for quality-agnostic and generalizable deepfake detection," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024, pp. 17395-17405.
- [10]. L. Baraldi, F. Cocchi, M. Cornia, L. Baraldi, A. Nicolosi, and R. Cucchiara, "Contrasting deepfakes diffusion via contrastive learning and global-local similarities," in European Conference on Computer Vision, Cham: Springer Nature Switzerland, Sep. 2024, pp. 199-216.
- [11]. Y. Wang, K. Yu, C. Chen, X. Hu, and S. Peng, "Dynamic graph learning with content-guided spatial-frequency relation reasoning for deepfake detection," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 7278-7287.
- [12]. Z. Yan, Y. Zhang, X. Yuan, S. Lyu, and B. Wu, "Deepfakebench: A comprehensive benchmark of deepfake detection," arXiv preprint arXiv:2307.01426, 2023.
- [13]. X. Li, K. Li, Y. Zheng, C. Yan, X. Ji, and W. Xu, "Safeear: Content privacy-preserving audio deepfake detection," in Proceedings of the 2024 on ACM SIGSAC Conference on Computer and Communications Security, Dec. 2024, pp. 3585-3599.
- [14]. Z. Yan, Y. Zhao, and H. Wang, "VoiceWukong: Benchmarking deepfake voice detection," in 34th USENIX Security Symposium (USENIX Security 25), 2025, pp. 4561-4580.