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Abstract

Hospital resource management faces increasing complexity due to volatile patient demand and capacity constraints.
This research presents a hybrid forecasting framework integrating time series decomposition with gradient boosting
techniques for predicting hospital bed occupancy and patient flow patterns. Using three years of operational data
from a large American hospital system, the proposed approach combines seasonal decomposition methods with
LightGBM to capture both temporal patterns and complex non-linear relationships. Experimental results
demonstrate mean absolute percentage error of 2.3% for one-day-ahead bed occupancy predictions, representing
18% improvement over standalone machine learning methods and 32% improvement over classical time series
approaches. The framework successfully forecasts emergency department volumes with 6.4% mean absolute
percentage error while maintaining computational efficiency suitable for daily operational deployment.
Implementation case studies reveal measurable operational improvements including 17% reduction in bed
assignment times and enhanced equipment utilization. This research contributes a practical methodology for
transforming reactive hospital resource management into proactive capacity planning.

Keywords: hospital resource forecasting, gradient boosting, patient flow prediction, operational analytics

1. Introduction
1.1. Background and Motivation

American hospital systems operate under mounting pressures from unpredictable demand fluctuations,
capacity limitations, and operational inefficiencies that directly impact patient outcomes and healthcare
delivery quality. Emergency departments experience recurring overcrowding crises, with boarding times
extending beyond acceptable thresholds during peak demand periods. Inpatient units struggle with suboptimal
bed utilization patterns, creating bottlenecks throughout the healthcare delivery system.

1.1.1. Healthcare Resource Management Challenges

Contemporary healthcare operations confront multidimensional challenges in resource allocation that strain
both clinical and administrative capacities. Patient admission patterns exhibit high temporal variability driven
by seasonal disease prevalence, day-of-week effects from elective procedure scheduling, and unpredictable
emergency arrivals. Intensive care units face particularly acute challenges with bed availability as patients
require extended monitoring periods and specialized equipment. Medical-surgical units experience fluctuating
occupancy rates that complicate staffing decisions and discharge planning.

1.1.2. The Role of Predictive Analytics in Healthcare Operations

Predictive analytics represents a paradigm shift from reactive resource management toward anticipatory
capacity planning. Macll)nine learning techniques applied to historical operational data enable identification of
temporal patterns, seasonal variations, and correllajltions with external factors. King et al. demonstrated that
machine learning approaches achieve superior accuracy in predicting emergency department admissions when
compared with conventional statistical methods[1]. Accurate bed occupancy forecasts enable dynamic bed
assignment policies that optimize patient placement across nursing units.

1.2. Research Objectives and Scope

This research develops and validates a hybrid forecasting framework for hospital resource demand prediction
that combines time series decomposition with gradient boosting machine learning. The primary objective
addresses improving forecast accuracy for bed occupancy and patient flow across multiple time horizons while
maintaining computational efficiency suitable for operationalpdeployment. Alsinglawi et al. established that
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explainable machine learning approaches enhance clinical acceptance by providing transparent prediction
mechanisms[2].

1.2.1. Forecasting Hospital Bed Demand

Bed demand prediction constitutes the central forecasting challenge, encompassing daily and weekly
occupancy levels across diverse hospital service lines. Intensive care units require specialized forecasting
approaches due to unpredictable patient deterioration events and variable length of stay patterns. Medical-
surlgig:al units exhibit more regular patterns influenced by scheduled procedures and consistent discharge
policies.

1.2.2. Patient Flow Prediction in Emergency Departments

Emergency department patient flow forecasting presents distinctive challenges stemming from arrival pattern
unpredictability and high temporal resolution requirements. Vollmer et al. developeg unified forecasting
approaches demonstrating effectiveness across dlgferent emergency department contexts[3]. Hourly volume
predictions enable tactical staffing adjustments while daily aggregate forecasts support strategic planning.

1.2.3. Equipment Utilization Forecasting

Medical equipment represents substantial capital investments requiring optimization of utilization patterns
and maintenance scheduling. The research explores forecasting methodologies for equipment utilization that
support both operational scheduling decisions and strategic acquisition planning.

1.3. Contributions

This research advances healthcare operations literature through multiple dimensions of methodological and
practical contributions. The hybrid forecasting framework integrates time series decomposition and gradient
boosting in a novel architecture that balances interpretability requirements with predictive accuracy objectives.

1.3.1. Methodological Contributions

The paper presents a hybrid forecasting approach that integrates time series decomposition for capturing
seasonal patterns with gradient boosting for learning complex relationships in hospital operational data.

1.3.2. Practical Implementation Framework

Beyond algorithmic contributions, the research provides a practical framework for implementing predictive
analytics in hospital operations, 1nclud1ng data pipeline architecture, feature engineering strategies, and
performance monitoring approaches.

2. Literature Review and Related Work
2.1. Time Series Forecasting Methods in Healthcare

Healthcare demand forecasting has evolved from classical statistical techniques toward sophisticated machine
learning approaches. Autoregressive integrated moving average methods established foundational approaches
for hospital capacity planning through their capacity to model temporal dependencies and seasonal variations.

2.1.1. Traditional Statistical Approaches

Seasonal autoregressive integrated moving average models have served as benchmark methods for hospital
demand forecasting. Gao et al. applied traditional time series methods to inpatient discharge forecasting for
Singapore hospitals, establishing baseline performance levels for comparison with machine learning
alternatives[5]. Exponential smoothing variants capture seasonal patterns through additive or multiplicative
formulations suitable for different demand characteristics.

2.1.2. Machine Learning Advances

Machine learning techniques have expanded healthcare forecasting capabilities through their ability to model
non-linear relationships. Gradient boosting decision trees including XGBoost and LightGBM
implementations demonstrate superior performance on tabular healthcare data with mixed feature types.
Bedada et al. demonstrated multi-task learning approaches for hospital bed requirement prediction that
simultaneously forecast multiple resource categories[6]. Morid et al. conducted comprehensive reviews of
deep learning methods in healthcare time series prediction, identifying key success factors including
appropriate feature engineering and careful hyperparameter tuningError! Reference source not found..
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2.1.3. Hybrid Forecasting Frameworks

Recent literature increasingly explores hybrid architectures that combine statistical and machine learning
methods to leverage complementary strengths. Hamzaoui et al. compared multiple machine learning
approaches for emergency department patient flow forecasting during COVID-19, demonstrating the value of
method selection based on operational context[7].

2.2. Hospital Resource Allocation and Optimization

Resource allocation in healthcare operations intersects operations research methodologies with domain-
specific clinical and administrative constraints. Alshwaheen et al. developed frameworks for predicting patient
eterioration in intensive care units, enabling proactive resource allocation for high-risk patients[8].

2.2.1. Bed Management and Patient Placement

Hospital bed management encompasses policies for initial bed assignment, inter-unit transfers, and discharge
planning. Kaliappan et al. investigated optimization of resource allocation during pandemic conditions using
machine learning and artificial neural networks[9]. Dynamic allocation strategies adjust bed assignments
based on real-time occupancy levels and predicted admission volumes[10].

2.2.2. Staff Scheduling and Workforce Planning

Workforce planning integrates demand forecasts with staffing regulations, labor agreements, and employee
preferences to create feasible schedules that meet operational requirements. Nurse scheduling optimizations
balance workload equity and shift preferences while ensuring adequate coverage for predicted patient
volumes.

2.3. Gradient Boosting Applications in Healthcare Analytics

Gradient boosting methods have gained prominence in healthcare analytics through their effectiveness on
tabular data with mixed feature types. Lin et al. applied artificial intelligence techniques for hospital bed
allocation, demonstrating practical implementation of predictive models in resource management systems[11].
Karthikeyan et al. demonstrated forecasting patient length of stay for optimal hospital resource allocation
using gradient boosting techniques[12].

2.3.1. LightGBM for Time Series Prediction

LightGBM's gradient-based one-side sampling and exclusive feature bundling techniques achieve
computational efficiency while maintaining prediction accuracy. Feature engineering approaches transform
time series data into tabular formats suitable for gradient boosting through lag features, rolling statistics, and
temporal encodings.

3. Methodology
3.1. Problem Formulation and Data Description

The hospital resource forecasting problem requires predicting future demand levels y _t+h at forecast horizon
h given historical observations up to time t and associated predictor variables. The target variables encompass
bed occupancy counts aggregated at daily granularity across different service lines, emergency department
patient arrival volumes at hourly and daily resolution, and equipment utilization metrics.

3.1.1. Mathematical Problem Formulation

The forecasting objective minimizes prediction error across multiple horizons while maintaining operational
feasibility. Let y t represent the target resource metric at time t. The predictor variable set X t contains
historical demand observations {y_t-1,y_t-2, ..., y_t-L} where L specifies the maximum lag order, temporal
features capturing seasonality, and exogenous variables. The optimization objective minimizes mean absolute
error MAE = (1%\1) X |y 1-¥ i across N forecast instances. Alternative metrics including mean absolute
percentage error MAPE = (100/N) X |(y_1 - ¥ _1)/y _i| provide scale-independent accuracy assessments. Root
mean squared error RMSE = sqrt((1/N) X (y_1- ¥ _1)?) penalizes large prediction errors more severely.

3.1.2. Data Sources and Collection

Hospital operational data originates from multiple integrated information systems maintained by a large
American hospital system comprising over 500 mpatient beds across medical-surgical units, intensive care
units, cardiac care units, and specialty services. Admission-discharge-transfer systems record patient
movement events including admission timestamps, assigned bed locations, and discharge dispositions. The
dataset spans 1,095 consecutive days from January 2021 through December 2023, capturing seasonal
variations across three complete annual cycles. Emergency department data encompasses 26,280 hourly
observations recording patient arrival counts and acuity distributions.
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3.1.3. Data Preprocessing and Feature Engineering

Raw operational data requires substantial preprocessing to address data quality issues. Missing values receive
forward-fill imputation for short gaps under 24 hours. Outlier detection employs interquartile range methods
identifying observations exceeding 1.5 times the interquartile range beyond the 2531 or 75th percentiles.
Temporal feature engineering generates encodings capturing recurring patterns at multiple time scales. Day-
of-week indicators use one-hot encoding producing seven %inary features. Month indicators encode annual
seasonality through twelve binary features. Holiday flags identify federal holidays and major local events.
Kashvi et al. explored automated communication systems for bed allocation across multiple hospitals,
highlighting the importance of integrated data systems[13]. Rolling window statistics capture recent demand
trends through moving averages. Seven-day moving averages smooth daily fluctuations while preserving
weekly patterns. Lag features encode historical demand at operationally relevant intervals including one-day,
seven-day, and 28-day lags.

3.2. Proposed Forecasting Framework

The hybrid forecasting framework integrates seasonal decomposition with gradient boosting in a three-stage
architecture. Stage one applies seasonal decomposition to target time series, extracting trend, seasonal, and
residual components using additive formulationy t=T t+ S t+ R t. Stage two augments feature sets with
decomposed components alongside engineered temporal features. Stage three trains gradient boosting models
using LightGBM implementation on augmented feature sets.

3.2.1. Time Series Decomposition

Seasonal decomposition separates hospital demand time series into interpretable components facilitating
pattern analysis and feature engineering. The trend component T t captures long-term demand evolution
reflecting facility capacity changes and service mix adjustments. Seasonal components S_t encode recurring
patterns at specified periodicities including weekly cycles from elective procedure scheduling and annual
cycles from seasonal disease prevalence. Residual components R t=y t-T t-S tcapture deviations from
trend and seasonal baselines. Jamal et al. investigated decision support systems for healthcare resource
allocation efficiency[14], emphasizing the importance of systematic approaches to demand forecasting.

Table 1: Time Series Decomposition Component Statistics

. . Mean Trend Seasonal Residual Std Seasonal
Service Line Occupancy Range Amplitude Dev Strength
Medical-Surgical ~ 42.3 beds 38.1-46.7 4.2 beds 2.8 beds 0.73
Intensive Care 18.6 beds 16.2-21.4 2.1 beds 3.6 beds 0.42
Cardiac Care 12.4 beds 10.8-14.2 1.8 beds 2.1 beds 0.58
Eglaerrd%ifgy 8.7 patients 6.4-11.3 3.4 patients 4.2 patients 0.61

3.2.2. Gradient Boosting Architecture

The gradient boosting implementation employs LightGBM's histogram-based learning algorithm optimized
for training efficiency. The algorithm constructs ensemble predictions through sequential addition of decision
trees, with each subsequent tree fitted to residuals from prior ensemble predictions. The learning process
minimizes objective function L(y, F) =Z I(y_i, F(x_1)) + £ Q(f m) where | represents loss function measuring
prediction error, F denotes ensemble prediction, and Q specifies regularization terms. Hyperparameter
configuration balances prediction accuracy with computational efficiency. The number of estimators
N_estimators = 200 specifies ensemble size with early stopping monitoring validation set performance.
Learning rate 1 = 0.05 controls contribution magnitude from each tree. Maximum tree depth max_depth = 6
lfimits i}rlldividual tree complexity. Feature fraction feature fraction = 0.8 randomly samples 80% of features
or each tree.

Table 2: Hyperparameter Configuration and Performance Comparison

Configuration N_estimators Learning Max Min Child Feature Validation Validation

Rate Depth Samples Fraction MAE MAPE (%)
Baseline 100 0.1 8 10 1.0 4.82beds 11.4%
Optimized-1 200 0.05 6 20 0.8 3.76 beds  8.9%
Optimized-2 300 0.03 5 25 0.7 391 beds  9.2%
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Final 200 0.05 6 20 0.8 3.68beds  8.7%

3.2.3. Multi-Horizon Forecasting Strategy

The framework supports predictions across multiple forecast horizons through direct forecasting strategies

training separate models for each horizon. One-day-ahead models predict y t+1 using features available at

time t. Seven-day-ahead models predict y t+7 for strategic planning. Feature sets adapt to forecast horizons

through lag selection and temporal encoding adjustments. Prediction intervals quantity forecast uncertainty

Eihroqt%h quantile regression approaches training models to predict specific percentiles of conditional demand
1stribution.

3.3. Evaluation Framework and Performance Metrics

Model evaluation employs time series cross-validation preventing data leakage while assessing generalization
to future periods. The validation procedure partitions chronologically ordered data into training sets containing
observations up to time t and test sets containing predictions for t+1 through t+h. Performance metrics
encompass statistical accuracy measures and operational utility indicators. Hamzaoui et al. employed dual
LSTM frameworks for forecasting patient flow and COVID-19 severity classification in emergency
departments, demonstrating the value of specialized architectures[14].1.

3.3.1. Baseline Comparison Methods

Comparative evaluation establishes the proposed hybrid framework's marginal value. Simple baseline
methods include historical average computing mean demand over training periods, seasonal naive forecasts
using demand from same weekday in the prior week, and exponential smoothing. Advanced baseline methods
incorporate standalone LightGBM without decomposition features, Prophet time series forecasting, and
seasonal ARIMA models.

3.3.2. Statistical Validation and Significance Testing

Statistical validation employs hypothesis testing establishing whether performance improvements achieve
significance beyond random variation. The Diebold-Mariano test statistic DM = mean(d_t) / sqrt(var(d_t)/N)
assesses accuracy differences where d_t represents squared error difference between competing forecasts.
Bootstrap resampling generates empirical confidence interval estimates through repeated sampling from
residual distributions.

Figure 1: Time Series Decomposition of Hospital Bed Occupancy

Bed Occupancy

Trend (beds)

Seasonal (beds)

Residual (beds)

Jan 2021 Jul 2021 Jan 2022 Jul 2022 Dec 2023

This figure displays a four-panel visualization spanning the 1,095-day observation period from January 2021
through December 2023. The top panel shows observed daily total bed occupancy as a line plot with
occupancy values ranging from 248 to 487 beds on the y-axis. The line exhibits both weekly oscillations from
day-of-week effects and longer seasonal patterns from annual cycles. Color-coded shading highlights seasonal
periods with winter months 1n light blue and summer months in light yellow. Vertical dashed lines mark major
events including the progressive care unit expansion in March 2022.

The second panel displays the extracted trend component as a smooth line showing long-term occupancy
evolution. The trend line begins at approximately 375 beds in January 2021, increases gradually to 395 beds
by March 2022 coinciding with the unit expansion, then resumes gradual increase to 410 beds by December
2023.
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The third panel presents the seasonal component as a regular oscillating pattern repeating weekly and annually.
Weekly patterns appear as consistent sawtooth waves with peaks on Mondays and troughs on Sundays. The
y-axis ranges from -30 to +30 beds relative to trend.

The fourth (%Janel shows residual components as irregular fluctuations around zero, representing deviations
unexplained by trend and seasonal patterns. Most residuals cluster within +15 beds. Points exceeding +2
standard deviations receive annotation identifying associated events such as holiday periods or severe weather
incidents.

4. Experimental Results and Analysis

4.1. Dataset Characteristics and Exploratory Analysis

The empirical dataset encompasses comprehensive operational metrics from a 512-bed hospital system
serving a metropolitan area with population exceeding 800,000 residents. The facility maintains 280 medical-
surgical beds, 48 intensive care beds, 32 cardiac care beds, and 64 specialty unit beds. Emergency department
capacity includes 42 treatment bays with annual volume exceeding 68,000 patient visits.

4.1.1. Descriptive Statistics

Daily bed occupancy across the hospital system exhibits mean 387.4 beds with standard deviation 42.8 beds,
yielding coefficient of variation 11.0% indicating moderate demand variability. Medical-surgical units
demonstrate highest occupancy variability with coefficient of variation 15.3%. Intensive care units show

coefficient of variation 19.4%, driven by unpredictable patient deterioration events. Emergency department
daily volumes average 186.3 patients with standard deviation 28.6 patients.

Table 3: Descriptive Statistics for Hospital Resource Metrics

Std Ccv

Resource 25th 75th

Category Mean Dev (%) Min Petl Median Petl Max Skewness
Total Occupancy  387.4 428 11.0 248 362 391 418 487 -0.31
Medical - Surgical 218.6 33.5 15.3 128 198 221 242 278  -0.18
Intensive Care 382 74 19.4 18 33 38 43 48 -0.12
Cardiac Care 247 4.8 19.4 10 22 25 28 32 -0.24
ED Daily Volume 186.3 28.6 15.4 98 167 184 206 287 0.42
B e oUY 78 43 ss1 0 5 7 10 24 0.68

4.1.2. Temporal Pattern Analysis

Decomposition analysis reveals distinct temporal patterns at multiple time scales. Weekly seasonality
manifests through consistent patterns with Monday admissions averaging 14.2% above weekly mean, Tuesday
8.7% above mean, and Sun({)ay 22.7% below mean. Monthly patterns demonstrate peak occupancy during
January and February averaging 8.3% above annual mean, coinciding with influenza season. Emergency
department arrival patterns show pronounced hourly variation with overnight lows from 2:00-6:00 AM
averaging 3.2 patients per hour and afternoon peaks of 11.7 patients per hour from 2:00-4:00 PM.

4.1.3. Correlation and Feature Importance

Correlation analysis between predictor features and target occupancy variables guides feature selection

priorities. Recent demand history shows strong correlations with one-day lag correlation 0.84, seven-day lag

correlation 0.76, and 28-day lag correlation 0.63. Day-of-week indicators demonstrate correlations ranging

from -0.32 for Sunday to 0.28 for Monday. Equipment utilization metrics demonstrate moderate correlation

0.47 with surgical bed occupan?{. Feature importance analysis identifies lag features contributing 48% of
in

total importance, temporal encodings 31%, seasonal decomposition components 15%, and external factors
6%.

4.2. Forecasting Performance Comparison

Experimental evaluation demonstrates that the proposed hybrid framework achieves superior forecasting
accuracy compared to baseline methods. For one-day-ahead bed occupancy predictions, the gradient boosting
approach with seasonal decomposition achieves mean absolute percentage error 2.3% compared to 2.8% for
standalone gradient boosting, 3.1% for Prophet, 3.6% for ARIMA, and 4.2% for seasonal naive baseline.
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These results represent 18% accuracy improvement over standalone gradient boosting and 32% improvement
over classical time series methods.

4.2.1. Bed Occupancy Forecasting Results

Detailed bed occupancy forecasting results reveal performance variations across service lines aligned with
underlying demand pattern characteristics. Medical-surgical unit forecasts achieve mean absolute error 3.2
beds for one-day horizon with the hybrid framework compared to 4.1 beds for standalone gradient boosting.
Intensive care unit forecasts show mean absolute error 2.1 beds for the hybrid approach compared to 2.8 beds
for alternatives. Seven-day-ahead forecasts maintain predictive value though accuracy degrades with extended
horizons. Medical-surgical unit forecasts achieve mean absolute error 5.7 beds at seven-day horizon compared
to 7.4 beds for standalone gradient boosting.

Table 4: Forecasting Performance Comparison Across Methods and Horizons

Forecast Method MAE MAPE RMSE Directional 80% PI
Horizon (beds) (%) (beds) Accuracy (%) Coverage (%)
1-day Seasonal Naive 16.2 4.2 21.4 62.3 68.4

ARIMA 13.9 3.6 18.7 67.8 74.2

Prophet 12.1 3.1 16.3 71.4 76.8

LightGBM

Only 10.8 2.8 14.9 74.2 78.6

Hybrid

Framework 8.9 2.3 12.4 78.9 81.3
7-day Seasonal Naive 35.7 9.2 44.8 58.7 64.2

ARIMA 31.4 8.1 39.6 61.3 69.7

Prophet 28.3 7.3 36.2 64.8 72.4

LightGBM

Only 24.7 6.4 32.1 68.2 75.8

Hybrid

Framework 19.2 5.0 26.7 72.6 79.4

4.2.2. Patient Flow Prediction Performance

Emergency department volume forecasting demonstrates strong performance at daily aggregation levels with
mean absolute percentage error 6.4% for one-day-ahead predictions using the hybrid framework compared to
7.8% for stan(fa)llone gradient boosting. Daily volume forecasts achieve mean absolute error 11.9 patients
compared to actual volumes averaging 186.3 patients. Hourly volume predictions exhibit higher relative
variability. One-hour-ahead forecasts achieve mean absolute error 2.1 patients with the hybrid framework.
Feature importance analysis reveals recent hourly volumes contribute 42% of total importance, time-of-day
indicators 24%, day-of-week encodings 18%, seasonal components 11%, and external factors 5%.

Figure 2: Emergency Department Hourly Volume Forecasting Performance
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This figure presents a comprehensive multi-panel visualization of emergency department patient arrival
forecasting across one representative week in January 2023. The main panel displays observed hourly patient
volumes as a black line plot with volume ranging 0-24 patients on the y-axis and 168 hours spanning Monday
through Sunday on the x-axis. One-hour-ahead predictions from the hybrid framework appear as a blue line
with circular markers, demonstrating close tracking of observed volumes. Twenty-four-hour-ahead
predictions appear as an orange line with triangular markers. Prediction intervals at 80% coverage appear as
shaded regions around forecast lines.

The visualization clearly shows daily arrival patterns with overnight lows from 2:00-6:00 AM dropping to 1-
3 patients per hour, morning ramp-up reaching 8-10 patients by 10:00 AM, afternoon peaks of 12-15 patients
from 2:00-4:00 PM, and evening declines to 8-10 patients. Weekend patterns exhibit distinct shapes with
delayed morning increases compared to weekdays.

A secondary panel displays forecast errors over time as a bar chart with positive errors in red and negative
errors in blue. Error magnitude ranges from -6 to +6 patients on the y-axis. Largest forecast errors concentrate
during transition periods between arrival patterns.

A third panel presents cumulative distribution functions comparing forecast error distributions across methods.
The hybrid framework error distribution demonstrates steepest slope near zero error. The 80th percentile error
magnitude for the hybrid framework reaches 3.2 patients compared to 4.8 patients for standalone gradient
boosting.

4.2.3. Comparative Analysis Across Methods

Systematic comparison across forecasting methods reveals performance patterns informing method selection
for different operational contexts. Simple baseline methods provide adequate accuracy during stable
operational periods, achieving mean absolute percentage error under 5% for consecutive weeks without
special events. Classical time series methods capture seasonal patterns effectively through parametric
specifications. Standalone machine learning methods demonstrate strong performance through automatic
feature interaction learning. The hybrid framework combining decomposition and gradient boosting achieves
best overall performance across diverse forecasting tasks.

Table 5: Performance Comparison Across Operational Scenarios

. . Hybrid LightGBM Prophet ARIMA  Seasonal

Operational — Scenario  pramework  Only MAPE MAPE ~ MAPE  Naive
quency  MAPE (%) (%) (%) (%) MAPE (%)

Normal
Operations 68% of days 2.1 2.5 2.8 3.2 3.8
Seasonal Peak
(Winter) 18% of days 2.8 34 3.9 4.8 6.2
Holiday Period 8% ofdays 3.2 4.1 4.7 59 7.8
Facility
Expansion 3% of days 4.7 6.2 7.3 8.4 11.2
Event
System
Upgrade 3% of days 3.6 4.8 54 6.7 8.9
Period

4.3. Operational Impact Assessment

Beyond statistical accuracy metrics, operational value assessment evaluates the forecasting framework's
contribution to hospital resource management decisions and performance outcomes. Implementation case
studies conducted dll)lring the final six months of the observation period compare operational metrics before
and after forecast integration.

4.3.1. Bed Management Decision Support

Forecast-informed bed management implementation demonstrates measurable efficiency improvements.
Average time from admission decision to bed assignment decreased from 127 minutes pre-implementation to
106 minutes post-implementation, representing 17% improvement. Emergency department boarding hours for
admitted patients declined from 14.3 patient-hours per day to 11.2 patient-hours per day, a 22% reduction.
Dynamic bed allocation strategies improved workload balance across nursing units. Coefficient of variation
in nursing unit census decreased from 0.18 to 0.14. During a severe influenza outbreak in December 2023,
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forecasts predicted occupancy exceeding 95% capacity three days in advance, enabling preemptive activation
of surge protocols.

4.3.2. Resource Utilization Improvements

Equipment scheduling optimization leveraging utilization forecasts improved coordination between
diagnostic services and inpatient units. Computed tomography scanner utilization increased from 74% to 81%
of available time slots. Staffing efficiency improvements materialized through better alignment between
workforce deployment and predicted demand. Float pool nurse utilization increased from 68% to 79% of
available hours.

Figure 3: Operational Performance Metrics Improvement Timeline
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This figure displays a comprehensive dashboard-style visualization showing six key operational metrics
tracked over twelve months from June 2023 through May 2024. The vertical dashed line at September 2023
marks forecast implementation, dividing the observation period into pre-implementation baseline and post-
implementation intervention. Each metric appears in a separate panel with consistent x-axis spanning the
twelve-month period.

The top-left panel shows average bed assignment time in minutes ranging from 80 to 140 minutes. Pre-
implementation period shows values fluctuating around 125 minutes. Post-implementation values show clear
downward shift to approximately 105 minutes. A horizontal reference line at 90 minutes indicates the
institutional target.

The top-right panel displays emergency department boarding hours per day ranging from 8 to 20 hours. Pre-
implementation values cluster around 14 hours with frequent spikes. Post-implementation shows consistent
reduction to approximately 11 hours.

The middle-left panel presents nursing unit census coefficient of variation ranging from 0.10 to 0.25. Pre-
implementation shows average 0.18 with high variability. Post-implementation demonstrates reduction to
0.14.

The middle-right panel shows computed tomography scanner utilization percentage ranging from 65% to 85%.
Pre-implementation utilization averages 74%. Post-implementation shows sustained increase to 81% average.

The bottom-left panel displays staff satisfaction scores on workload predictability ran(%ing from 0 to 100.
Monthly survey responses appear as bar charts with error bars representing 95% confidence intervals. Pre-
implementation scores average 58. Post-implementation shows progressive increase reaching 72 by December
2023.

The bottom-right panel presents total cost savings from improved resource utilization in thousands of dollars
per month. Cumulative savings appear as an ascending line plot starting at zero in September 2023. Individual
cost components appear as stacked area charts including reduced agency staffing, decreased overtime,
iznglzaioved equipment utilization, and reduced diversion costs. Cumulative savings reach $487,000 by May
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5. Discussion, Limitations, and Future Research Directions
5.1. Key Findings and Practical Implications

This research establishes that hybrid forecasting frameworks combining time series decomposition with
gradient boosting achieve substantial accuracy improvements over traditional approaches. The empirical
validation demonstrates mean absolute percentage error below 2.5% for one-day-ahead bed occupancy
forecasts, surpassing standalone machine learning methods by 18% and classical statistical approaches by
32%.

5.1.1. Methodological Insights

Explicit seasonal decomposition enhances gradient boosting performance through multiple mechanisms
beyond simple feature augmentation. Decomposed trend components capture long-term patterns including
facility expansions and service mix evolution. Seasonal components provide interpretable encodings of
recurring patterns. Feature engineering emerges as critical determinant of forecasting success, with lagged
demand variables and rolling statistics providing strongest predictive signals. Hyperparameter optimization
reveals regularization mechanisms prevent overfitting in operational forecasting contexts.

5.1.2. Implementation Considerations

Successful operational deployment requires systematic attention to data infrastructure, model maintenance
protocols, and stakeholder engagement. Automated data pipelines ensure timely feature generation from
electronic health record systems. Regular model retraining schedules adapt to evolving operational patterns.
User interface design emphasizing forecast interpretability promotes adoption among hospital administrators.

5.1.3. Broader Healthcare Applications

The forecasting framework generalizes beyond bed management to diverse healthcare resource allocation
challenges including surgica% scheduling, inventory management, and capacity planning. Operating room
scheduling benefits from predicted post-operative bed availability. Multi-facility health systems benefit from
coordinated forecasting enabling load balancing across campuses.

5.2. Research Limitations and Validation Considerations

Several limitations warrant acknowledgment and consideration. The empirical validation utilizes data from a
single hospital system, potentially limiting generalizability to institutions with different patient populations or
operational practices. External validity concerns arise from the observation period spanning post-pandemic
normalization when operational patterns may differ from pre-pandemic baselines.

5.2.1. Data and Generalizability Constraints

Electronic health record data quality varies across institutions based on data governance practices and system
implementation maturity. Feature availability depends on specific information system capabilities.
Geographic and seasonal patterns specific to the studfy region may not generalize to different climates.
Population demographics including age distributions affect demand patterns in ways not captured by purely
temporal features.

5.3. Future Research Directions and Extensions

Multiple promising directions emerge for extending this research toward more comprehensive predictive
capacity management systems. Real-time forecasting capabilities integrating streaming data could enable
dynamic forecast updates. Current batch forecasting produces daily updates, while intraday updates could
support minute-level operational decisions.

5.3.1. Advanced Machine Learning Techniques

Deep learning architectures including transformer models with attention mechanisms could capture complex
temporal dependencies. Transfer learning approaches could leverage data from multiple hospitals to improve
predictions for institutions with limited historical data. Probabilistic forecasting methods including quantile
regression forests could provide comprehensive uncertainty quantification.

5.3.2. Integration with Hospital Operations

Prescriptive analytics frameworks translating forecasts into specific resource allocation recommendations
represent natural extensions. Optimization models using forecasts as inputs could recommend bed assignments
minimizing expected transfers. Closed-loop systems where forecasts automatically trigger operational
responses could reduce manual intervention requirements.
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5.3.3. Policy and Economic Analysis

Economic evaluation quantifying the financial value of forecast-informed resource allocation through cost-
benefit analysis would support investment decisions. Reduced emergency department boarding generates
savings from improved throughput. Health equity implications of predictive capacity management merit
investigation, ensuring forecast-driven resource allocation maintains equitable access across patient
populations.
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