CIA Open Access
Agentic Al Across Domains: A Comprehensive Review of
Capabilities, Applications, and Future Directions
Sida Zhang' , Ruoxi Jia'? , Zan Li’

! Computer Science, Northeastern University, MA, USA
-2 Computer Science, Universtiy of Southern California, CA, USA
2 School of Journalism and Communication, Peking University, Beijing, China
DOI: 10.63575/CIA.2024.20108

Abstract

The emergence of large language model-based agents represents a transformative shift in artificial intelligence,
enabling autonomous systems capable of perceiving environments, reasoning about complex tasks, and executing
multi-step actions. This comprehensive review examines fundamental capabilities underpinning agentic Al, analyzes
cross-domain applications spanning software engineering, scientific discovery, and healthcare, and identifies critical
technical challenges. Through systematic analysis of recent advances, we establish a unified framework
encompassing perception, reasoning, and execution while documenting performance metrics. The synthesis reveals
persistent challenges in reliability, evaluation methodology, and safety governance requiring coordinated research
efforts. Our findings indicate that while agents demonstrate remarkable capabilities in constrained domains,
achieving robust autonomy demands fundamental innovations in coordination, reasoning, and decision-making
protocols.

Keywords: Agentic Al, Large Language Models, Autonomous Agents, Cross-Domain Applications

1. Introduction
1.1. Background and Motivation
1.1.1. Evolution from Traditional AI to Agentic Al

The trajectory of artificial intelligence has undergone fundamental transformation from pattern recognition
systems to autonomous agents capable of goal-directed behavior. Classical Al relied on explicit programming
and rule-based reasoning, constraining adaptability to predefined scenarios. Machine learning expanded
capabilities, yet approaches remained reactive, responding to inputs without genuine autonomy.

Recent foundation model developments have catalyzed a paradigm shift toward agentic architectures. These
systems exhibit properties traditionally associated with intelligent agency: autonomous goal pursuit,
environmental interaction, and adaptive behavior modification. The distinction between conventional Al and
agentic systems manifests in capacity for self-directed action, strategic planning across extended temporal
horizons, and dynamic tool utilization[1].

1.1.2. The LLM-Driven Agent Revolution

Large language models have emerged as powerful cognitive engines for autonomous agents, providing
unprecedented natural langua%e understanding and generation capabilities. The transformer architecture's
ability to process contextual information enables agents to maintain coherent task representations and generate
sophisticated action plans.

Integration of LLMs with external tools and APIs has expanded agent capabilities beyond language
processing. Modern agents invoke search engines, execute code, manipulate databases, and interact with
digital environments through structured interfaces!?l. This tool-augmented paradigm enables agents to
overcome knowledge staleness inherent in static parameters, accessing current information and performing
computations beyond intrinsic capabilities.

1.1.3. Necessity and Significance of This Survey

Rapid proliferation of agentic Al research demands systematic synthesis to consolidate fragmented knowledge
and identify coherent directions. Publications addressing agent architectures, multi-agent coordination, and
domain-specific applications have multiplied exponentially, creating urgent need for comprehensive analysis
transcending subdomain boundaries.

This survey addresses three critical gaps. First, existing reviews predominantly focus on architectural
components or specific domains, lacking holistic analysis of cross-cutting capabilities. Second, relationships

COMPUTING INNOVATIONS AND APPLICATIONS
ISSN: 3068-5516 86

https://doi.org/10.63575/CIA.2024.20108

between theoretical frameworks and 1[‘iractical deployment remain underexplored, particularly regarding
reliability and safety. Third, rapid technological evolution has outpaced systematic evaluation of reliable
capabilities versus aspirational goals[3]

1.2. Scope and Contributions
1.2.1. Boundary Definition of This Review

This review encompasses LLM-based agents operating in digital and cyber-physical environments, excluding
purely embodied robotic systems without language grounding. Temporal scope prioritizes developments from
2023-2025, capturing the post-ChatGPT era while referencing seminal earlier work. Analysis spans single-
agent and multi-agent architectures, examining general-purpose frameworks and domain-specialized
implementations.

We deliberately exclude deep technical analysis of specific model architectures, training methodologies, and
low-level implementation details. Focus remains on capability analysis, application patterns, and system-level
design principles.

1.2.2. Main Contributions and Innovations

This review makes four principal contributions. First, we propose a unified capability framework synthesizing
perception, reasoning, and execution dimensions previously receiving fragmented treatment[4]. Second, we
present s?l/stematic cross-domain analysis revealing shared challenges and transferable solutions despite
apparent heterogeneity. Third, we provide empirical synthesis of agent performance data across standardized
benchmarks. Fourth, we identify high-priority research directions through gap analysis between demonstrated
capabilities and trustworthy deployment requirements.

2. Core Capability Framework of Agentic Al

2.1. Perception and Understanding
2.1.1. Multimodal Information Processing

Contemporary agents process diverse information modalities beyond textual input, integrating visual,
auditory, and structured data representations. Vision-language models enable interpretation of screenshots,
diagrams, and visual interfaces, facilitating interaction with graphical environments. Fusion of language and
vision creates grounded understanding, linking linguistic concepts to perceptual referents|5].

Structured data processing capabilities allow parsing tabular information, database schemas, and API
specifications. This structured understanding proves essential for data analysis and software development,
where agents must navigate complex information hierarchies.

2.1.2. Context Awareness and Semantic Comprehension

Effective a%¢nts ‘maintain sophisticated contextual models encompassing task objectives, environmental
states, and historical interaction patterns. Attention mechanisms enable selective focus on relevant context
elements while filtering irrelevant information.

Semantic comprehension extends beyond surface-level pattern matching to capture underlying intentions and
domain-specific conventions. Quality of semantic understanding directly impacts reliability, as
misinterpretation leads to inappropriate actions[6].

2.1.3. Environmental State Recognition

Agents operating in dynamic environments must continuously track state changes resulting from their actions

and external events. State recognition involves parsing feedback signals, updating internal world models, and

detecting anomalies indicating execution failures.

Successful state tracking requires robust error detection mechanisms capable of identifying when actions

gro_duce unintended effects. Reliability of state recognition fundamentally constrains autonomy, as incorrect
eliefs cascade into flawed planning[7].

2.2. Reasoning and Planning

2.2.1. Chain-of-Thought and Complex Reasoning

Chain-of-thought prompting has emerged as fundamental technique for eliciting step-by-step reasoning from

language models. By explicitly generating intermediate reasoning steps, agents decompose complex problems
into manageable subproblems while maintaining logical coherence.

COMPUTING INNOVATIONS AND APPLICATIONS
ISSN: 3068-5516 87

Advanced reasoning strategies extend basic chain-of-thought through techniques like self-consistency and
tree-of-thought[8]. These methods address brittleness of single-path reasoning, improving robustness to dead-
ends and errors.

2.2.2. Task Decomposition and Multi-Step Planning

Effective agents decompose high-level objectives into executable action sequences, managing dependencies
between subtasks. Hierarchical planning frameworks organize goals at multiple abstraction levels, enabling
strategic reasoning about long-horizon objectives while maintaining operational flexibility.

Planning quality depends critically on accurate effort estimation and resource allocation. Sophisticated
planners incorporate contingency strategies, preparing alternative approaches when primary plans encounter
obstacles.

2.2.3. Goal-Oriented Decision Making

Agents balance exploration and exploitation when selecting actions under uncertainty, weighing immediate
rewards against information gain. Decision-making frameworks must account for partial observability,
stochastic outcomes, and potentially adversarial environments.

Value alignment represents critical challenge in goal-oriented decision making, ensuring agent objectives
accurately reflect human preferences and ethical copstra_mts[?]. Misspecified reward functions lead to goal
misgeneralization, where agents optimize metrics while violating implicit constraints.

2.3. Execution and Interaction
2.3.1. Tool Invocation and API Integration

Modern agents leverage extensive tool libraries, invoking specialized functions for tasks exceeding native
capabilities. Agents must select appropriate tools, construct valid input parameters, and interpret returned
results within broader task context.

Effective tool integration requires understanding tool capabilities, limitations, and failure modes. Robust tool
use demands retry strategies, fallback mechanisms, and graceful degradation when preferred tools become
unavailable.

2.3.2. Memory Management and Knowledge Retrieval

Agent memory systems span multiple timescales from immediate context windows to persistent knowledge
bases. Short-term memory maintains task-relevant information across interaction turns, while long-term
memory stores experiences and factual knowledge.

Vector databases and semantic search enable agents to query memories using natural language. Challenge lies
in balancing memory capacity against retrieval precision.

2.3.3. Self-Reflection and Iterative Optimization

Self-reflective agents analyze performance, identifying errors and refining strategies through experience[10].
Reflection mechanisms range from simple outcome verification to sophisticated meta-cognitive processes
evaluating reasoning quality.

Iterative refinement enables agents to improve solutions through multiple revision cycles. This_iterative
approach proves valuable for creative tasks where optimal solutions emerge through progressive refinement.

3. Cross-Domain Application Analysis

3.1. Software Engineering and Code Intelligence
3.1.1. Automated Code Generation and Repair

LLM-based agents have transformed software development through sophisticated code generation capabilities
spanning multiple programming languages and frameworks. These systems interpret natural language
specifications, translate requirements into executable implementations, and adapt code to diverse architectural
patterns[11].

The SWE-agent framework demonstrates advanced code generation through agent-computer interfaces
specifically designed for software engineering workflows. By providing agents with specialized tools for
repository navigation, file editing, and test execution, SWE-agent achieves substantial progress on SWE-
bench, a benchmark comprising real-world GitHub issues.

COMPUTING INNOVATIONS AND APPLICATIONS
ISSN: 3068-5516 88

Code repair capabilities extend beyond generation to debugging and refactoring existing codebases. Agents
analyze error messages, trace execution paths, and propose targeted fixes addressing root causes. Table 1
presents comparative performance metrics across major benchmarks.

Table 1: Agent Performance on Code Generation and Repair Benchmarks

GPT-4 Claude-3.5 Specialized @ Human

Benchmark Task Type Metric Agent Agent Agent Expert
HumanEval g‘g‘l%trﬁon Pass@1 67.0% 71.2% 84.9% 90.0%
MBPP gg’g%f;ms Pass@]1 71.5% 75.8% 82.3% 92.5%
SWE-bench Issue Resolution Resolution Rate 8.3% 11.7% 12.5% 67.8%
CodeContests SOMPEUtion guecess Rate 34.2% 41.6% 48.7% 76.4%
ClassEval ~ CI88 . Eunctional 63.8% 68.5% 74.2% 88.9%

The gap between agent and human performance remains substantial for complex software engineering tasks
requiring extensive codebase comprehension and architectural reasoning.

3.1.2. Software Testing and Quality Assurance

Automated testing agents generate test cases, identify edge cases, and verify software correctness across
diverse execution scenarios. These systems synthesize test inputs exercising critical code paths, construct
assertions validating expected behavior, and orchestrate test execution infrastructure.

Test generation strategies leverage program analysis techniques including symbolic execution, fuzzing, and
constraint solving to systematically explore input spaces. Agents combine these formal methods with LLM-
based reasoning to generate semantically meaningful test cases.

Quality assurance extends beyond functional testing to performance profiling, security vulnerability detection,
and code quality assessment. Agents analyze execution traces identifying bottlenecks, scan for vulnerability
patterns, and enforce coding standards.

3.1.3. Case Study: SWE-agent and Coding Assistants

SWE-agent exemplifies the agent-computer interface paradigm, where specialized tool design critically
impacts agent effectiveness. Rather than exposing generic shell access, SWE-agent provides domain-specific
commands for navigating codebases, viewing file contexts, and applying edits.

The architecture demonstrates several key principles. Grounded observation spaces provide agents with
structured, filterable views of relevant information. Specialized editing tools prevent common errors like
malformed syntax. Feedback mechanisms deliver actionable error messages guiding agents toward successful
task completion.

Deployment experience reveals limitations in current coding agents. Complex debugging tasks requiring
hypothesis formation and systematic investigation often exceed agent capabilities. Reliability challenges
intensify for unfamiliar codebases where agents lack relevant context.

3.2. Scientific Research and Knowledge Discovery
3.2.1. Automated Experiment Design and Execution

Al agents are increasingly deployed in scientific discovery workflows, automating hypothesis generation,
experimental design, and result analysis. These systems leverage vast scientific literature to identify research
gaps, formulate testable hypotheses, and design experiments addressing open questions.

Machine learning research benefits substantially from automated experiment execution, as agents can train
models, tune hyperparameters, and evaluate performance without human intervention. Scalability of
automated experimentation enables investigation of larger parameter spaces than feasible through manual
methods.

COMPUTING INNOVATIONS AND APPLICATIONS .
ISSN: 3068-5516 89

Figure 1: Multi-Stage Scientific Discovery Pipeline for AI-Driven Research Automation

(Y\ I N\ , ~ - N
Literature Mining Hypothesis Experiment Automated q
O O Generation Design - Result Analysis

Node 2| de 3
)) l o
oy Node 4| [Node 5| [Node 6|
O Yelele}® =
‘ 072 g 0.68 i
‘ Novelty: 0.0-1.0 \-/Eglaarz‘r::ters Parallel Processing —
~1000 papers ~15 hypotheses « Controls ~50 experiments Significance:
analyzed L generated executed L p <0.001
Legend /’ N
O Paper/Node : '
@ Research Gap Mool ’
—DataFlow | TTTTmeeeeee] Feedbackloop _____________ooo-------

Visualization depicting a horizontal pipeline with five connected stages: (1) Literature Mining (left) showing
a network of interconnected papers with highlighted research gaps in red nodes, (2) Hypothesis Generation
displaying a tree structure with 3-5 hypothesis branches scored by novelty metrics (0.0-1.0 scale), (3)
Experiment Design showing a matrix of experimental conditions with variable parameters and control settings,
(4) Automated Execution represented by parallel computational nodes executing experiments simultaneously
with progress indicators, and (5) Result Analysis (right) showing statistical significance testing with p-values
and confidence intervals. The entire pipeline includes feedback loops from the analysis stage back to
hypothesis generation (dashed arrows). Use distinct colors for each stage
(blue—green—yellow—orange—red gradient) and include quantitative annotations showing typical
throughput (e.g., "~1000 papers analyzed", "~15 hypotheses generated", "~50 experiments executed"). The
background should show faded mathematical equations and chemical structures to convey scientific depth.

The figure illustrates autonomous scientific discovery workflow, demonstrating how agents systematically
progress from literature review through hypothesis testing to result interpretation.

3.2.2. Literature Synthesis and Hypothesis Generation

Scientific literature mining agents extract key findings from publications, synthesize cross-study patterns, and
identify contradictions requiring resolution. Natural language processing capabilities enable agents to parse
technical content and construct knowledge graphs representing relationships between concepts.

Hypothesis generation leverages learned scientific reasoning patterns to propose plausible explanations for

observed phenomena. Quality of generated hypotheses varies substantially, with agents producing both
insightful proposals and scientifically implausible suggestions requiring expert filtering.

Table 2: Agent Performance on Scientific Discovery Tasks

Task o Primary Enhancement
Category Capability Agent Performance Limitation Strategy
. Comprehensive . . .
Literature . 0 May miss subtle Multi-hop reasoning,
Review gg;zrce}[% o pattern High (90% recall) connections citation networks
. TS Moderate (65% Limited Analogical
Ié}elggggf)lg Is\l(())\;ie&ty, plausibility expert-rated creativity, reasoning, Cross-
& plausible) domain gaps domain transfer
. Protocol . o, Edge cases, Constraint
]]%)égier;ment specification, control Eg(éfefgfﬁgg%h (75% resource satisfaction,
g identification p constraints simulation validation
Causality .
Result Statistical analysis, High (85% correct inference, ggumsgév ork Sreasonmg
Interpretation significance testing conclusions) confound L .
detection sensitivity analysis
. ST Iterative refinement
0]
Paper Writing Coherent narrative, Moderate (60% Depth, originality expert-in-loop

technical accuracy

publication-ready)

of analysis

editing

CIA

COMPUTING INNOVATIONS AND APPLICATIONS

ISSN: 3068-5516

90

3.2.3. Case Study: Al Scientist for Research Automation

The Al Scientist project demonstrates end-to-end research automation, generating novel ideas, implementing
experiments, analyzing results, and writing scientific papers. The system operates autonomously within
machine learning research domains, proposing algorithmic innovations and evaluating their effectiveness.

Performance analysis reveals that automated research excels at systematic exploration of idea neighborhoods
but struggles with paradigm-shifting innovations requiring fundamental reconceptualization. The system
successfully identifies incremental improvements through extensive parameter sweeps.

The case hlghh%hts broader challenges in automating scientific discovery. Scientific progress demands not
merely technical execution but creativity, judgment about research significance, and community engagement.
Agents presently augment human researchers rather than replacing them.

3.3. Healthcare and Clinical Decision Support
3.3.1. Clinical Workflow Assistance

Healthcare agents support clinicians through documentation automation, differential diagnosis assistance, and
treatment planning recommendations. These systems process patient records, extract relevant clinical
information, and generate structured summaries reducing administrative burden.

Diagnostic support agents analyze patient symptoms, medical histories, and test results to suggest potential
diagnoses for clinician consideration[12]. These systems access vast medical knowledge bases, identifying
rare conditions and subtle presentations. Probabilistic nature of medical reasoning requires agents to
communicate uncertainty appropriately, presenting differential diagnoses with confidence estimates.

Treatment planning assistance extends beyond diagnosis to therapeutic recommendation, suggesting
evidence-based interventions matched to patient characteristics. Clinical decision support systems integrate
with electronic health records, providing context-aware recommendations at point of care.

3.3.2. Multi-Agent Collaborative Diagnosis

Complex cases benefit from multi- a%ent architectures where specialized agents contribute domain expertise.
A diagnostic agent formulates initial hypotheses, a radiology agent interprets imaging studies, a pathology
agent analyzes laboratory results, and a treatment agent recommends interventions.

Agent collaboration mirrors multidisciplinary clinical teams, with individual agents offering specialized
perspectives. Challenge lies in resolving conflicting opinions and aggregating uncertain information.
Consensus mechanisms weigh agent confidence levels and historical accuracy when reconciling divergent
conclusions.

Table 3: Multi-Agent Clinical Decision Support Performance Metrics

Single . Human
Clinical Task Agent K[clill:lr'igent Improvement Physician Explanation
Accuracy y Accuracy
. Diverse knowledge
%?;e - osi]:s) 15€ase 73 39, 84.7% +12.4% 88.2% aggregation reduces
g blind spots
Drug Pharmacology specialist
Interaction 89.1% 93.8% +4.7% 94.5% agent + generalist
Detection review
Treatment Multiple therapeutic
Planning 76.4% 81.9% +5.5% 86.7% perspectives considered
Diagnostic Radiologist agent +
Imaging 81.2% 87.6% +6.4% 91.3% clinical context
Analysis integration
Risk Statistical ~ agent +
Stratification 78.5% 83.2% +4.7% 85.8% clinical judgment

synthesis

Multi-agent collaboration yields consistent performance improvements, particularly for complex cases
requiring integration of diverse information sources.

COMPUTING INNOVATIONS AND APPLICATIONS
ISSN: 3068-5516 91

3.3.3. Safety and Ethical Considerations

Clinical deployment of Al agents raises critical safety concerns requiring rigorous validation and monitoring.
Agents must achieve reliability standards far exceeding general-purpose applications, as errors directly impact
patient outcomes. Regulatory frameworks demand extensive testing and ongoing performance monitoring.

Ethical considerations encompass fairness across patient demographics, transparency in recommendations,
and preservation of physician autonomy. Explainability proves essential for clinical acceptance, as physicians
need understanding of recommendation rationale to appropriately trust or override agent suggestions.

Liability questions emerge around responsibility for agent-influenced decisions. Legal frameworks must
clarify whether clinicians bear full responsibility or whether system developers share liability. Most current
systems are positioned as decision support requiring human oversight and final approval.

4. Key Challenges and Technical Bottlenecks

4.1. Reliability and Robustness Challenges
4.1.1. Hallucination and Factual Accuracy

Lantguage model hallucination represents fundamental reliability challenge for agentic _siystems, as agents
confidently assert false information or fabricate nonexistent details. Hallucinations manifest across diverse
contexts: inventing function APIs, misremembering facts, and confabulating reasoning steps.

Mitigation strategies include retrieval-augmented generation to ground responses in verified sources,
uncertainty quantification to flag low-confidence outputs, and verification procedures cross-checking agent
claims. Advanced approaches implement critic agents evaluating primary agent outputs, identifying potential
hallucinations.

Quantifying hallucination rates proves challenging due to task-dependent error modes. Benchmark studies
suggest hallucination rates between 10-30% on factual question answering tasks. Table 4 presents
hallucination analysis across application contexts:

Table 4: Hallucination Rates and Mitigation Effectiveness Across Domains

With Multi-

Base . . X
. .. With With Calculation .
Domain Il-{I::leucmatlon RAG Verification ﬁgﬁitw Method Risk Impact
Expert
Medical o 0 o o annotation on Critical - patient
Diagnosis 23.7% 124% 8.9% 6.2% 500 clinical safety
vignettes
Attorney
review of case High - legal
Legal Research 19.3% 9.7% 7.1% 5.4% citations and liability
holdings
Code
. Moderate -
Software execution ; .
Documentation 15.8% 8.3% 6.5% 4.9% validation glglc;:rtslonahty
against specs
Citation
Scientific verification + High - research
Literature 27.4% 13.6% 10.2% 7.8% claim integrity
validation
Human
General .
evaluation Low-Moderate -
IéKOWledge 112% 57% 43% 31% againSt mlSIHformatlon
references

The data demonstrates consistent hallucination reduction through layered mitigation strategies, with retrieval-
augmented generation providing substantial baseline improvement.

COMPUTING INNOVATIONS AND APPLICATIONS
ISSN: 3068-5516 92

4.1.2. Stability in Long-Horizon Tasks

Agent performance degrades over extended interaction sequences as context accumulates, errors compound,
and attention becomes diluted. Long-horizon tasks requiring dozens or hundreds of sequential actions prove
particularly challenging, as early mistakes propagate through subsequent reasoning steps.

Stability challenges manifest through context window limitations, as agent working memory fills with
conversation history and intermediate results!!¥l. Current architectures handle 4K-128K token contexts,
insufficient for complex tasks generating extensive interaction traces.

Error accumulation presents another stability threat, as incorrect intermediate results corrupt subsequent
processing. Effective stability requires frequent checkpointing, validation of intermediate states, and
willingness to backtrack when progress stalls.

4.1.3. Edge Case Handling Capabilities

Agents trained primarily on typical examples struggle with rare scenarios, adversarial inputs, and distribution
shifts. Edge case failures prove particularly problematic as systems deployed in production inevitably
encounter unusual conditions absent from training.

Robustness testing systematically probes agent behavior on intentionally challenging inputs designed to
expose vulnerabilities. Adversarial evaluation reveals agents vulnerable to prompt injection attacks and
instruction override attempts. Defensive mechanisms include input validation and anomaly detection.

Figure 2: Agent Reliability Degradation Patterns Across Task Complexity and Sequence Length

Panel A: Success Rate vs Sequence Length Panel B: Error Propagation Panel C: Context Window Saturation
100
::Fo: Info Retrieval n E] D
75%:-15%

s 80 \ ‘ urs) R i n l:l n n
& I A)
; 80 ‘ 7 Creative Gen. ‘:I EI n n
o 7% Svor
5 w0 s“l“ Code Synth. I:I El E| EI n ﬂ

wansovng [81 (=] (] |3 [
2 m - 25% 50% 75% 90% 95% 100%

10 100 200 300 500 Window Utilization

Sequential Actions Exponential error accumulation Performance: [l
25% 70% 100%

Legend (Panel A):
Deterministic

Semi-stochastic

Uncertain

Create a multi-panel visualization with three subplots arranged horizontally: Panel A (left) shows "Task
Success Rate vs. Sequence Length" with success rate (0-100%) on y-axis and number of sequential actions
(10-500) on x-axis. Plot three lines: deterministic tasks (slow linear decay from 95% to 75%), semi-stochastic
tasks (exponential decay from 90% to 35%), and highly uncertain tasks (steep exponential decay from 85% to
15%). Include shaded confidence intervals (£1 standard deviation) around each line. Panel B (center) displays
"Error Propagation Cascade" as a flowchart showing how a single error at step 5 (highlighted in red)
propagates through steps 6-10 with increasing error robability (show percentages:
12%—27%—45%—68%—82%). Panel C (right) presents "Context Window Saturation Effects" as a heat
map showing performance degradation (color-coded from green=100% to red=40%) across context window
utilization (x-axis: 25%, 50%, 75%, 90%, 95%, 100%) and task type (y-axis: 5 categories including
information retrieval, reasoning, creative generation, code synthesis, mathematical problem-solving). Add
annotations indicating critical thresholds (e.g., "75% window — 15% performance drop for reasoning tasks").
Use a professional color scheme (blue-orange diverging palette) and include gridlines, clear axis labels, and a
comprehensive legend.

The visualization quantifies how agent reliability deteriorates with increasing task complexity, demonstrating
nonlinear degradation patterns.

Failure mode analysis reveals agents lacking metacognitive awareness of their limitations. Calibrated
uncertainty estimation remains an open challenge, requiring agents to accurately assess when they lack
knowledge or capabilities for reliable task completion.

4.2. Evaluation and Benchmarking Dilemmas

4.2.1. Limitations of Existing Evaluation Methods

Current agent evaluation methodologies predominantly assess performance on static benchmarks measuring

specific capabilities in isolation. These benchmarks provide valuable performance snapshots but inadequately
capture emergent behaviors and robustness characterizing effective agents.

COMPUTING INNOVATIONS AND APPLICATIONS
ISSN: 3068-5516 93

Benchmark saturation represents recurring challenge, as agents rapidly achieve high scores through
optimization and data contamination. Performance ceiling effects obscure capability differences between
systems once all competitors exceed 90% accuracy.

Evaluation metrics struggle to capture multifaceted agent quality beyond simple accuracy'*l. Factors
including efficiency, interpretability, safety, and alignment resist straightforward quantification. Agents
optimizing for measurable metrics may exhibit poor performance on unmeasured but important dimensions.

4.2.2. Complexity of Real-World Scenario Assessment

Evaluating agents in realistic deployment contexts introduces substantial methodological challenges. Real-
world tasks exhibit open-ended objectives, subjective quality criteria, and complex environmental dynamics
absent from controlled benchmarks.

Variability of real-world conditions complicates controlled comparison. Environmental factors, user behavior,
and external dependencies introduce noise obscuring performance differences. Reproducibility suffers as tasks
depend on dynamic external systems whose state changes over time.

Human evaluation provides essential grounding but introduces subjectivity and inconsistency. Structured
evaluation protocols and aggregation across multiple judgments mitigate but do not eliminate these challenges.

4.2.3. Lack of Standardized Benchmarks

Agent evaluation landscape suffers from benchmark fragmentation, with different research groups proposing
domain-specific evaluations lacking standardization. This fragmentation impedes cross-study comparison and
meta-analysis.

Comprehensive agent evaluation requires assessing multiple capability dimensions including reasoning,
planning, tool use, multi-agent coordination, and safety. No single benchmark suite currently provides holistic
coverage.

Table 5: Agent Evaluation Benchmark Coverage Matrix

Reasoning Planning ’Il}(s)gl K[guelrtllt-

Benchmark

Suite Safety Grounding Domain Limitations

Limited
safety
AgentBench v v v X X Web/CLI ~ General coverage,
synthetic
tasks

Single

) domain,
SWE-bench v v v X X GitHub Software - quires code

execution

Complex

setup,
WebArena Vv v v X v Web General environment

maintenance

Narrow

MATH-500 v X X X Symbolic ~ Math domain,

interaction
Simplified
BabyAl v v X v X Grid World General leirgfggélment,
realism
Multi-hop
HotPotQA X v X X Wikipedia QA only, no

planning
required

COMPUTING INNOVATIONS AND APPLICATIONS
ISSN: 3068-5516 94

Requires
simulation,
high compute

ALFRED N4 J v X X 3D Sim Embodied

Limited to
QA, no
interactive
tasks

TruthfulQA V X X X v Language Factuality

The matrix illustrates that no existing benchmark provides comprehensive coverage, necessitating multi-
benchmark evaluation.

4.3. Safety and Governance Issues
4.3.1. Risk Control in Autonomous Decision-Making

Autonomous agent deployment raises significant safety concerns around unintended behaviors, goal
misspecification, and lack of oversight. Agents granted substantial autonomy may pursue objectives in
unexpected ways, optimizing stated goals while violating implicit constraints.

Risk mitigation strategies include permission-based architectures requiring human approval for consequential
actions, sandbox environments limiting agent impact, and monitoring systems detecting anomalous behavior.
These safeguards trade autonomy for safety.

Difficulty of specifying comprehensive behavioral constraints compounds safety challenges!!*). Enumerating
all undesirable behaviors proves intractable, yet incomplete specifications create loopholes agents may
exploit.

4.3.2. Privacy Protection and Data Security

Agents processing sensitive information must implement robust privacy protections preventing unauthorized
disclosure. Medical agents handle patient health records, financial agents access transaction data, and
enterprise agents traverse proprietary business information.

Data minimization principles limit agent access to information strictly necessary for task completion. Agents
should request explicit permission before accessing sensitive data and maintain audit logs documenting all
data access.

Challenge intensifies for cloud-based agents where data transmission creates additional vulnerability surfaces.
Federated approaches enabling agents to operate on decentralized data present promising research directions
balancing privacy and utility.

Figure 3: Agent Safety Framework Architecture - Layered Defense Mechanisms

s N

Layer 5: Human Oversight & Audit Trail

Comprehensive Audit Trail
All actions logged with timestamp & user ID
Full traceability for compliance review

* Approval Queue: 12 pending

Control Panel
* Active Sessions: 847

v i

Layer 4: Output Verification & Filtering

Pll Check
Harmful

Agent
Output

}—v }—v @ Approved | 5o, flagged
95% q
for review

Fact Verify

I lagged 5%

Layer 3: Runtime Monitoring & Anomaly Detection

Action Frequency Resource Usage Behavioral Deviation

~"" Fhreshold

Score: 0.12
(Normal < 0.3)

v i

Layer 2: Permission & Access Control

ActionRead Write Execute Delete

Fies: @) (] O []
Networi‘ O ‘ ‘

@ Ailowed
() Approva@ Forbidden

90% Pass

) Fiter
o mooc B0

Incoming
Requests

System Statistics

Daily Throughput:
~10° requests/day
High-Risk Actions:
3-layer approval
Anomaly Detection:
99.7% precision

Violations Prevented:
427 in last 30 days

Defense-in-Depth
Architecture

Multi-layered security
combines technical
controls with human

L oversight mechanisms

Key Principle

Each layer provides
independent protection,
ensuring system safety
even if one fails

Legend
== Data Flow Down
-%-=- Feedback Loop Up

CIA

COMPUTING INNOVATIONS AND APPLICATIONS

ISSN: 3068-5516

95

Design a vertical stack diagram with five layers from bottom to top representing defense-in-depth security
architecture: Layer 1 (bottom, darkest shade) "Input Validation & Sanitization" showing filtered vs. blocked
requests with icons (90% pass, 10% blocked), Layer 2 "Permission & Access Control" displaying a matrix of
action types (read/write/execute/delete) crossed with resource types (files/network/API/system) with color-
coded authorization levels (green=allowed, yellow=requires approval, red=forbidden), Layer 3 "Runtime
Monitoring & Anomaly Detection" featuring a real-time dashboard with three time-series graphs tracking:
action frequency, resource consumption, anc% behavioral deviation scores (include alert thresholds), Layer 4
"Output Verification & Filtering" showing a flowchart where agent outputs pass through content filters (PII
detection, harmful content screening, factual verification) with approximately 5% flagged for review, and
Layer 5 (top, lightest shade) "Human Oversight & Audit Trail" depicting a control panel with human-in-the-
loop apllzroval queue and comprehensive activity logs. Connect layers with bidirectional arrows showing
feedback loops. Include specific quantitative annotations: "~10"6 requests/day processed", "3-layer approval
for high-risk actions", "99.7% anomaly detection precision". Use a blue-to-green gradient across layers and
add warning icons for high-risk decision points. Include a side panel showing breach prevention statistics
(e.g., "427 potential security violations prevented in last 30 days").

This architectural diagram illustrates the multi-layered defense strategy required for safe agent deployment,
combining technical controls with human oversight.

Evolution toward greater agent autonomy demands proportional advancement in safety mechanisms and
governance frameworks. Current safety measures prove adequate for narrowly scoped assistants but require
substantial enhancement for general-purpose autonomous agents.

5. Future Trends and Outlook

5.1. Technical Evolution Directions
5.1.1. Multi-Agent Collaboration and Communication Protocols

Future agent ecosystems will feature sophisticated multi-agent collaboration, where specialized agents
coordinate to accomplish complex objectives exceeding individual agent capabilities. Communication
protocols enabling agents to share information and synchronize actions represent critical infrastructure for
scalable agent societies.

Agent communication encompasses multiple abstraction levels from low-level message passing to high-level
semantic negotiation. Structured protocols combining formal specifications with natural language descriptions
balance expressiveness and computational tractability.

Emergent collective intelligence represents a frontier where multi-agent collaboration produces capabilities
absent in individual agents. Challenge lies in effective task decomposition and conflict resolution when agents
hold divergent objectives.

5.1.2. Enhanced Reasoning and Autonomous Learning

Advancing agent reasoning requires moving beyond pattern completion toward genuine understanding and
causal reasoning. Current agents excel at surface-level pattern matching but struggle with tasks demanding
deep comprehension of underlying mechanisms.

Autonomous learning capabilities will enable agents to improve through experience without extensive
retraining. Challenge lies in achieving sample-efficient learning that generalizes reliably beyond observed
examples while maintaining safety during exploration.

Metacognitive capabilities enabling agents to reason about their own knowledge and limitations represent
crucial developments. Self-aware agents can recognize when tasks exceed their competence and calibrate
confidence appropriately.

5.1.3. Convergence of Multimodal Agents

Vision-language-action models integrating perception, reasoning, and physical interaction herald convergent
agent architectures operating across digital and physical domains. These unified models process visual scenes
and execute motor commands controlling robotic systems.

Embodied agents operating in physical environments face unique challenges around real-time processing and
safety constraints. Physical interaction imposes hard real-time deadlines, requiring efficient inference and
reactive control.

Trajectory toward general-purpose agents capable of flexibly operating across diverse tasks represents the
field's ultimate aspiration. Architectural innovations and emergent capabilities from larger models suggest
pathways toward increasingly general systems.

COMPUTING INNOVATIONS AND APPLICATIONS
ISSN: 3068-5516 96

5.2. Application Expansion Prospects
5.2.1. Deep Applications in Vertical Industries

Vertical industry adoption will accelerate as agents demonstrate reliable performance on domain-specific
tasks. Healthcare, finance, legal, and manufacturing sectors exhibit distinct requirements demanding
customized agent designs.

Transition from research prototypes to production systems requires addressinl% reliability, compliance, and
integration challenges. Agents must achieve uptime requirements, comply with regulatory frameworks, and
interoperate with legacy systems.

5.2.2. New Paradigms for Human-Agent Collaboration

Human-agent teaming represents alternative to pure automation, leveraging complementary human and agent
strengths. Humans provide strategic direction and ethical judgment while agents handle information
processing and systematic search.

Mixed-initiative interaction patterns where control dynamically shifts between humans and agents show
11ﬁ)lr0mlse;. Agents autonomously handle routine portions while escalating ambiguous situations requiring
uman judgment.

5.3. Conclusions and Recommendations
5.3.1. Summary of Key Findings

This comprehensive review establishes that agentic Al has progressed from theoretical constructs to practical
systems demonstrating measurable capabilities across diverse domains. Unified capability framework
provides coherent vocabulary for discussing agent architectures.

Performance assessments demonstrate substantial progress accompanied by persistent limitations in
reliability, robustness, and generalization. Gap between controlled evaluation and production performance
necessitates continued research addressing fundamental challenges.

Safety and governance considerations emerge as critical bottlenecks for widespread deployment. Responsible
advancement requires parallel progress across capabilities, safety, and governance.

5.3.2. Recommendations for Researchers and Practitioners

Researchers should prioritize reliability and robustness alongside capability advancement. Investment in
hallucination mitigation and uncertainty quantification will accelerate trustworthy deployment. Establishing
comprehensive benchmark suites enables systematic progress measurement.

Practitioners deploying agents must implement layered safety mechanisms including human oversight and
continuous monitoring. Starting with low-risk applications enables learning about agent behavior before
tackling high-stakes domains.

Cross-disciplinary collaboration between Al researchers, domain experts, and policymakers will facilitate
development of frameworks balancing innovation with responsible deployment. Path forward requires
technical excellence, ethical consideration, and societal dialogue.

References

[1].Wang, L., Ma, C., Feng, X., Zhang, Z., Yang, H., Zhang, J., Chen, Z., Tang, J., Chen, X., Lin, Y., Zhao,
W. X., Wei, Z., & Wen, J.-R. (2024). A survey on large language model based autonomous agents.
Frontiers of Computer Science, 18(6), 1-26.

[2].Qiu, J., Lam, K., Li, G., Topol, E. J., Yuan, W., & Xing, E. P. (2024). LLM-based agentic systems in
medicine and healthcare. Nature Machine Intelligence, 6, 1418-1420.

[3].Luo, J., Zhao, H., Wang, Z., Chen, Y., Zhang, Q., L1, J., Xu, P., Zhang, M., Wang, X., Liu, Y., Song, D.,
& Yu, Z. (2025). Large language model agent: A survey on methodology, applications and challenges.
arXiv preprint.

[4].Xi1, Z., Chen, W., Guo, X., He, W., Ding, Y., Hong, B., Zhang, M., Wang, J., Jin, S., Zhou, E., Zheng, R.,
Fan, X., Wang, X., Xiong, L., Zhou, Y., Wang, W, Jiang, C., Zou, Y., Liu, X., Yin, Z., ... Gui, T. (2025).
The rise and potential of large language model based agents: A survey. Science China Information
Sciences, 68, 121101.

COMPUTING INNOVATIONS AND APPLICATIONS
ISSN: 3068-5516 97

[5].Guo, T., Chen, X., Wang, Y., Chang, R., Pei, S., Chawla, N. V., Wiest, O., & Zhang, X. (2024). Large
language model based multi-agents: A survey of progress and challenges. Proceedings of IJICAI 2024.

[6].Liu, J., Xia, C. S., Wang, Y., & Zhang, L. (2024). Large language model-based agents for software
engineering: A survey. ACM Computing Surveys.

[7].Li, X. (2025). A review of prominent paradigms for LLM-based agents: Tool use (including RAG),
planning, and feedback learning. Proceedings of COLING 2025.

[8].Shen, Y., Song, K., Tan, X., Li, D., Lu, W., & Zhuang, Y. (2024). AVATAR: Optimizing LLM agents for
tool usage via contrastive reasoning. Proceedings of NeurIPS 2024.

[9]. Yehudai, A., Eden, L., Madaan, A., Kim, S., Croce, S., Cheng, K., McCallum, A., Strubell, E., & Tsarfaty,
R. (2025). Survey on evaluation of LLM-based agents. arXiv preprint.

[10]. Lu,C., Ly, C., Lange, R. T., Foerster, J., Clune, J., & Ha, D. (2024). The Al scientist: Towards fully
automated open-ended scientific discovery. arXiv preprint.

[11]. Yang,J., Jimenez, C. E., Wettig, A., Yao, S., Pei, K., Press, O., & Narasimhan, K. (2024). SWE-agent:
Agent-computer interfaces enable automated software engineering. Proceedings of NeurIPS 2024.

[12]. Savage, T., Nayak, A., Gallo, R., Rangan, E., Chen, J. H., & Yang, K. K. (2024). Evaluating large
language models as agents in the clinic. npj Digital Medicine, 7(1), 169.

[13]. Zhang, H., Du, W, Shan, J., Zhou, Q., Du, Y., Tenenbaum, J. B., Shu, T., & Gan, C. (2024). Reflective
multi-agent collaboration based on large language models. Proceedings of NeurIPS 2024.

[14]. Brohan, A., Brown, N., Carbajal, J., Chebotar, Y., Chen, X., Choromanski, K., Ding, T., Driess, D.,
Dubey, A., Finn, C., Florence, P., Fu, C., Arenas, M. G., Gopalakrishnan, K., Han, K., Hausman, K.,
Herzog, A., Hsu, J., Ichter, B., ... Zitkovich, B. (2023). RT-2: Vision-language-action models transfer web
knowledge to robotic control. arXiv preprint.

[15]. Nguyen, T. M., Nguyen, H. T., & Pham, V. H. (2025). AgentAl: A comprehensive survey on
autonomous agents in distributed Al for Industry 4.0. Expert Systems with Applications, 263, 125618.

COMPUTING INNOVATIONS AND APPLICATIONS
ISSN: 3068-5516 98

