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A b s t r a c t   

The exponential growth of cyber threats necessitates advanced automation in threat intelligence analysis and incident 

response workflows. This empirical study investigates the application of Large Language Models (LLMs) across 

critical security operations tasks, including threat intelligence extraction, TTP mapping, and automated response 

generation. Through systematic evaluation of multiple LLM architectures on real-world cybersecurity datasets 

comprising 1,000 threat intelligence reports and 500 incident records, we assess performance across entity 

extraction, threat actor attribution, and remediation recommendation tasks. Our experimental results demonstrate 

that LLMs achieve F1 scores exceeding 0.88 for Indicator of Compromise (IoC) extraction and reduce incident 

response time by 64% while maintaining 82% accuracy in MITRE ATT&CK technique mapping. The findings reveal 

significant efficiency gains with RAG-enhanced configurations showing 19% performance improvement over 

baseline approaches. This work provides empirical evidence supporting LLM deployment in security operations 

centers and identifies critical challenges in production environments. 

K e y w o r d s :  Large Language Models, Threat Intelligence, Incident Response, Cybersecurity Automation 

1. Introduction 

1.1. Research Background and Motivation 

1.1.1. The Growing Challenge of Cyber Threat Intelligence Analysis 

The contemporary threat landscape presents unprecedented challenges for cybersecurity professionals. Global 
cybercrime damages reached $8 trillion in 2023, with ransomware attacks increasing by 95% year-over-
year[1]. Security Operations Centers (SOCs) process an average of 11,000 alerts daily, yet 67% remain 
uninvestigated due to resource constraints. The volume and sophistication of Advanced Persistent Threats 
(APTs) overwhelm traditional analysis capabilities, creating a critical gap between threat detection and 
effective response. Threat intelligence analysis requires synthesizing information from diverse sources 
including vulnerability databases, dark web forums, security advisories, and incident reports. The mean time 
to identify a breach stands at 197 days, while containment requires an additional 69 days, resulting in 
substantial financial and reputational damage[2]. 

1.1.2. Limitations of Traditional Manual Analysis Approaches 

Conventional threat intelligence workflows rely heavily on manual effort and specialized expertise. Security 
analysts spend approximately 53% of their time on repetitive tasks such as alert triage, IoC validation, and 
report generation. The scarcity of skilled cybersecurity professionals, estimated at 3.4 million unfilled 
positions globally, exacerbates the challenge. Traditional rule-based systems and signature-matching 
approaches fail to detect zero-day exploits and polymorphic malware variants. Machine learning models 
trained on limited labeled datasets struggle with the dynamic nature of cyber threats. Knowledge graph 
construction for threat intelligence demands extensive manual curation to maintain accuracy and relevance. 

1.2. Research Objectives and Scope 

1.2.1. Primary Research Goals 

This research aims to empirically evaluate the effectiveness of Large Language Models in automating threat 
intelligence analysis and incident response workflows. We investigate LLM capabilities across three primary 
dimensions: structured information extraction from unstructured threat reports, automated TTP mapping to 
standardized frameworks, and generation of actionable response recommendations. The study examines 
multiple LLM architectures under varying configuration settings to identify optimal deployment strategies for 
production SOC environments. 
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1.2.2. Key Research Questions 

We address four fundamental research questions. RQ1 examines the accuracy of LLM-based entity extraction 
for IoCs, threat actors, and malware families from diverse intelligence sources. RQ2 evaluates the 
effectiveness of LLM-generated incident response recommendations in terms of relevance, completeness, and 
actionability. RQ3 investigates the comparative performance of different prompting strategies including zero-
shot, few-shot, and chain-of-thought approaches. RQ4 analyzes the impact of Retrieval Augmented 
Generation configurations on reducing hallucination and improving factual grounding. 

1.2.3. Scope Definition and Boundaries 

The research scope encompasses enterprise SOC workflows from initial threat detection through response 
execution. We focus on English-language threat intelligence sources including CVE databases, security 
vendor reports, CISA advisories, and underground forum discussions. The evaluation dataset spans threats 
from 2022-2024, covering ransomware campaigns, APT activities, and supply chain attacks. The study 
excludes real-time streaming analysis, focusing instead on batch processing scenarios typical of threat 
intelligence platforms. 

1.3. Contributions 

1.3.1. Main Contributions of This Study 

This work contributes to the cybersecurity research community through four key deliverables. We provide the 
first comprehensive empirical evaluation of LLMs across the complete threat intelligence lifecycle, 
encompassing 1,500 real-world security artifacts. Our experimental framework enables reproducible 
assessment of LLM performance on standardized metrics including precision, recall, and time efficiency. The 
curated benchmark dataset, annotated by domain experts, establishes a foundation for future research in AI-
assisted security operations. Practical deployment guidelines derived from our findings offer actionable 
insights for organizations considering LLM integration into existing security infrastructure. 

2. Background and Related Work 

2.1. Cyber Threat Intelligence Fundamentals 

2.1.1. CTI Lifecycle and Key Components 

Cyber Threat Intelligence operates through a cyclical process encompassing six phases: direction, collection, 
processing, analysis, dissemination, and feedback. The direction phase establishes intelligence requirements 
aligned with organizational risk profiles and security objectives. Collection aggregates data from technical 
sources, human sources, and open sources. Processing transforms raw data into structured formats suitable for 
analysis. Normalization procedures map disparate indicator types to standardized schemas such as STIX and 
TAXII. The analysis phase correlates indicators, attributes threats to specific adversary groups, and extracts 
actionable intelligenceError! Reference source not found.. 

2.1.2. Current CTI Analysis Practices and Challenges 

Contemporary CTI analysis leverages platforms including MISP, OpenCTI, and commercial threat 
intelligence feeds. Analysts utilize the MITRE ATT&CK framework to categorize adversary behaviors across 
14 tactics and 188 techniques. The Diamond Model provides structure for analyzing intrusion events through 
four core features: adversary, capability, infrastructure, and victim. Practical challenges include information 
overload from high-volume indicator streams, false positive rates exceeding 90% in automated detection 
systems, and the need for deep contextual understanding to distinguish genuine threats from benign 
anomalies[3]. 

2.2. Large Language Models in Cybersecurity 

2.2.1. Evolution of LLMs and Their Capabilities 

Large Language Models have evolved from early transformer architectures like BERT and GPT-2 to 
sophisticated systems including GPT-4, Claude, and domain-specialized variants[4]. The scaling hypothesis 
demonstrates that increasing model parameters and training data yields emergent capabilities in complex 
reasoning, few-shot learning, and instruction following. Contemporary LLMs process millions of tokens, 
enabling analysis of lengthy threat reports and technical documentation. Pre-training on diverse corpora 
provides LLMs with broad knowledge of security concepts, vulnerability patterns, and attack methodologies. 

2.2.2. Domain Adaptation Techniques for Security Applications 

Adapting general-purpose LLMs to cybersecurity domains employs multiple strategies. Continued pre-
training on security-specific corpora including CVE descriptions, exploit databases, and malware analysis 



 

COMPUTING INNOVATIONS AND APPLICATIONS 

ISSN: 3068-5516 101 

 

reports builds domain knowledge[5]. Parameter-efficient fine-tuning methods such as LoRA enable task-
specific optimization without full model retraining. Prompt engineering techniques including few-shot 
examples and chain-of-thought reasoning improve zero-shot performance on novel threat scenarios. RAG 
architectures integrate vector databases of authoritative security knowledge with LLM inference. 

2.2.3. Existing LLM Applications in Threat Analysis 

Recent research demonstrates LLM applications across multiple threat intelligence tasks. Automated report 
generation systems produce human-readable summaries from technical indicators and attack telemetry[6]. 
Entity extraction pipelines identify IoCs, malware families, and vulnerability references from unstructured 
text with precision exceeding traditional NER systems. TTP mapping algorithms correlate security events 
with MITRE ATT&CK techniques using semantic understanding of attacker behaviors. Knowledge graph 
construction frameworks leverage LLMs for relation extraction and ontology population. Multi-agent 
architectures distribute specialized analysis tasks across collaborating LLM instances. 

2.3. Related Research and Gap Analysis 

2.3.1. Recent Studies on LLM-based Threat Intelligence 

Comprehensive surveys characterize the application landscape of LLMs in cybersecurity. Systematic literature 
reviews analyze 300+ publications covering defensive applications, offensive capabilities, and security 
implications of LLM deploymentError! Reference source not found.. Evaluation frameworks assess LLM 
performance on malware detection, vulnerability identification, and threat hunting tasks. Empirical studies 
investigate specific applications: cybercrime forum analysis demonstrates 96% accuracy in extracting threat 
indicators from dark web discussions. Automated CTI reporting systems generate analyst-reviewed 
intelligence products with 85% acceptance rates. Knowledge graph construction pipelines achieve 89% entity 
extraction precision on diverse threat intelligence sources[7]. 

2.3.2. Identified Research Gaps 

Despite growing research interest, significant gaps remain in understanding LLM capabilities and limitations 
for production security operations[8]. Existing studies focus predominantly on isolated tasks rather than end-
to-end workflows encompassing detection through response. Evaluation datasets lack standardization, 
complicating cross-study comparisons and reproducibility. Limited investigation of failure modes, 
hallucination rates, and adversarial robustness constrains deployment confidence. Few studies quantify 
operational metrics including time savings, analyst effort reduction, and false positive rates in realistic SOC 
scenarios[9]. This research addresses these gaps through systematic empirical evaluation across diverse 
models, tasks, and configuration parameters. 

3. Methodology 

3.1. Experimental Framework Design 

3.1.1. Overall Architecture of the Evaluation Framework 

The experimental framework implements a four-stage pipeline supporting comprehensive LLM evaluation 
across threat intelligence and incident response tasks. The architecture comprises data ingestion, LLM 
processing, automated evaluation, and human validation components. Data ingestion modules parse diverse 
input formats including JSON, XML, and plain text from CVE databases, security vendor reports, and incident 
documentation[10]. Preprocessing standardizes text encoding, removes formatting artifacts, and segments 
documents into analyzable units. The LLM processing layer provides unified interfaces to multiple model 
endpoints including OpenAI GPT-4, Anthropic Claude-3, and open-source variants deployed via local 
inference servers. Request orchestration manages prompt construction, context window optimization, and 
batch processing. RAG integration connects vector databases (FAISS) and knowledge graphs (Neo4j with 
MITRE ATT&CK ontology) for context retrieval. Output parsers extract structured data from LLM responses, 
handling both JSON-formatted and natural language outputs. 

Automated evaluation compares LLM outputs against expert-annotated ground truth using precision, recall, 
F1-score, and BLEU metrics. Entity matching employs fuzzy string comparison and semantic similarity 
measures to accommodate surface form variations. TTP mapping validation checks correctness of MITRE 
technique identifications and assesses completeness of tactic coverage. Human validation interfaces enable 
security analysts to review LLM outputs through a web-based annotation platform. Evaluators rate response 
quality across five dimensions: relevance, completeness, accuracy, actionability, and clarity. 

3.1.2. Evaluation Metrics and Criteria 

Performance assessment employs task-specific metrics aligned with operational requirements. Entity 
extraction evaluation calculates micro-averaged precision, recall, and F1-score across IoC types (IP addresses, 
domains, file hashes, CVE identifiers)[11]. Strict matching requires exact string correspondence, while 
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relaxed matching accepts partial overlaps for compound entities. TTP mapping accuracy measures the 
percentage of correctly identified MITRE ATT&CK techniques among all predicted techniques. Coverage 
quantifies the proportion of relevant techniques identified from ground truth. Mean Average Precision (MAP) 
at various cutoff thresholds evaluates ranking quality when models predict multiple candidate techniques. 
Response recommendation quality assessment combines automated metrics and human judgment. BLEU and 
ROUGE scores measure textual similarity to reference responses. Expert ratings on 1-5 Likert scales capture 
qualitative dimensions including clarity, specificity, and feasibility. Time efficiency metrics compare LLM-
assisted workflows against manual baselines, measuring end-to-end processing duration and analyst 
interaction time. 

3.2. Dataset Collection and Preparation 

3.2.1. Data Sources and Collection Strategy 

The evaluation dataset aggregates 1,500 cybersecurity artifacts from four primary source categories, selected 
to represent operational diversity in SOC workflows. Public vulnerability databases contribute 500 records 
including CVE descriptions from NIST National Vulnerability Database, vendor security advisories from 
Microsoft, Cisco, and Oracle, and exploit documentation from Exploit-DB. Government threat intelligence 
includes 250 CISA alerts, FBI flash reports, and NCSC threat assessments covering nation-state activities and 
critical infrastructure targeting. Security vendor reports comprise 400 documents from CrowdStrike, 
Mandiant, and Recorded Future, detailing APT campaigns, malware analysis, and threat actor profiles. 
Underground forum discussions provide 200 samples from monitored cybercrime marketplaces. Incident 
response reports contribute 150 anonymized case studies from enterprise security incidents. 

Temporal coverage spans January 2022 through December 2024, capturing evolving threat patterns including 
the emergence of ChatGPT-enabled social engineering, exploitation of critical vulnerabilities, and escalation 
of ransomware-as-a-service operations. Threat type distribution ensures balanced representation: ransomware 
(28%), APT activities (24%), supply chain attacks (18%), phishing campaigns (16%), and cryptomining 
malware (14%). 

3.2.2. Annotation Protocol and Quality Control 

Expert annotation employs a rigorous three-phase protocol ensuring dataset quality and consistency. Initial 
annotation by two independent cybersecurity analysts with 5+ years of SOC experience labels entities, 
relationships, and response recommendations according to detailed guidelines. Entity annotation identifies 
and classifies IoCs, threat actors, malware families, vulnerabilities, and attack techniques. Relationship 
annotation captures semantic connections between entities, including exploits, attributed_to, and indicates 
relationships. TTP annotation maps attack behaviors to MITRE ATT&CK techniques and sub-techniques, 
supporting multiple mappings when applicable. Adjudication resolves annotation disagreements through 
structured discussion guided by domain experts. Inter-annotator agreement achieves Cohen's kappa of 0.84 
for entity recognition, 0.79 for TTP mapping, and 0.81 for response recommendations[12]. 

3.2.3. Dataset Statistics and Characteristics 

The curated dataset exhibits diverse characteristics reflecting real-world threat intelligence complexity. 
Document length distribution ranges from 156 to 8,742 tokens (mean: 2,341, median: 1,876), accommodating 
both concise alerts and comprehensive analysis reports. Entity density averages 23.7 entities per document, 
with variance across source types: CVE descriptions (14.2), APT reports (38.9), and forum posts (19.3). TTP 
coverage spans all 14 MITRE ATT&CK tactics, with uneven distribution reflecting attacker preferences: 
execution (18.7%), persistence (14.3%), privilege escalation (12.8%), defense evasion (16.2%), and credential 
access (11.4%). 

Table 1: Dataset Statistics and Characteristics 

Category 
CVE 
Reports 

Vendor 
Reports 

Gov. 
Alerts 

Forum 
Posts 

Incident 
Reports 

Total 

Documents 500 400 250 200 150 1,500 

Avg Tokens 1,124 3,456 2,018 987 4,231 2,341 

IoC Count 7,234 15,621 9,847 4,156 11,234 48,092 

Threat Actors 89 247 156 124 98 714 

Malware Families 234 512 298 187 345 1,576 

ATT&CK 
Techniques 

1,245 2,876 1,654 892 2,134 8,801 
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3.3. LLM Configuration and Experimental Setup 

3.3.1. Selected Models and Configuration Parameters 

The experimental design evaluates six LLM architectures representing diverse capabilities, scales, and 
deployment models. GPT-4 Turbo (gpt-4-1106-preview) provides state-of-the-art performance with 128K 
token context window, accessed via OpenAI API with temperature 0.1 for reproducibility. Claude-3 Sonnet 
balances capability and efficiency with 200K context window, configured at temperature 0.0 for deterministic 
outputs. GPT-3.5 Turbo offers cost-effective baseline performance with 16K context window. Open-source 
models enable local deployment and customization: Llama-3-70B-Instruct represents large open models with 
8K context, deployed on NVIDIA A100 GPUs using vLLM inference optimization. Mistral-7B-Instruct-v0.2 
demonstrates capabilities of smaller parameter-efficient models, quantized to 4-bit precision via GPTQ. 
SecBERT, a BERT-large variant continually pre-trained on security corpora, serves as specialized baseline 
for comparison. 

Model inference employs consistent hyperparameters across architectures where applicable: temperature 
range 0.0-0.3, top-p sampling at 0.95, maximum output tokens 2048 for extraction tasks and 1024 for 
classification. Hardware infrastructure comprises GPU servers with 8x NVIDIA A100 80GB for local model 
inference, 512GB RAM supporting large batch processing, and NVMe storage for dataset caching[13]. 

3.3.2. Prompting Strategies and RAG Implementation 

Prompting strategy exploration encompasses four primary approaches optimized through iterative refinement. 
Zero-shot prompting establishes baseline performance with task instructions and output format specifications 
but no examples. Few-shot prompting provides 3-shot examples demonstrating desired extraction format, 
entity typing, and TTP mapping conventions, selected to represent diverse threat types and complexity levels. 
Chain-of-thought prompting encourages step-by-step reasoning by instructing models to first identify relevant 
text spans, classify entity types, and explain mapping rationale before producing final outputs. Structured 
output prompting enforces JSON schema compliance through explicit formatting instructions and validation 
examples. 

RAG implementation integrates three retrieval strategies evaluated independently and in combination. Dense 
retrieval employs FAISS approximate nearest neighbor search over embedded document chunks (512 tokens, 
128 overlap), retrieving top-5 most semantically similar passages for each query. Sparse retrieval uses BM25 
ranking over TF-IDF representations, capturing exact keyword matches. Hybrid retrieval combines 
normalized dense and sparse scores with learned fusion weights (alpha=0.6 for dense, 0.4 for sparse). 
Knowledge graph retrieval queries Neo4j via Cypher statements, traversing relationships from identified 
entities to gather contextual information. 

Table 2: Experimental Configuration Matrix 

Model Parameters Context 
Zero-
Shot 

Few-
Shot 

CoT Structured RAG 
Total 
Runs 

GPT-4 Turbo ~1.7T 128K ✓ ✓ ✓ ✓ ✓ 5 

Claude-3 Sonnet ~500B 200K ✓ ✓ ✓ ✓ ✓ 5 

GPT-3.5 Turbo ~175B 16K ✓ ✓ ✓ ✓ ✓ 5 

Llama-3-70B 70B 8K ✓ ✓ ✓ ✓ ✓ 5 

Mistral-7B 7B 8K ✓ ✓ ✗ ✓ ✓ 4 

SecBERT 340M 512 ✓ ✗ ✗ ✗ ✗ 1 

Figure 1 illustrates the complete experimental pipeline from data ingestion through evaluation. The diagram 
depicts four primary modules arranged in sequential flow with feedback loops. The Data Ingestion Module 
(top) shows parallel processing streams for CVE databases, vendor reports, government alerts, forum posts, 
and incident reports, each feeding into a central preprocessing unit that performs tokenization, normalization, 
and chunking. Color coding distinguishes data source types: blue for public databases, green for vendor 
intelligence, orange for government sources, purple for underground forums, and red for incident data. 

The LLM Processing Module (middle-left) displays a hub-and-spoke architecture with a central prompt 
construction engine connecting to six model endpoints. Each endpoint box contains the model name, 
parameter count, and context window size. Arrows indicate bidirectional communication for request dispatch 
and response collection. The RAG subsystem appears as an integrated component, showing connections to 
the vector database (represented as a cylinder with FAISS icon), knowledge graph (represented as a network 
node diagram), and hybrid retrieval coordinator. 
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Figure 1: Experimental Framework Architecture 

 

The Automated Evaluation Module (middle-right) presents three parallel evaluation tracks: entity extraction 
metrics (precision, recall, F1), TTP mapping accuracy (technique correctness, coverage, MAP), and response 
quality (BLEU, ROUGE, action alignment). Each track feeds into a results aggregation component that 
generates performance matrices and comparative visualizations. Ground truth data flows from the annotation 
database into comparison units within each evaluation track. The Human Validation Module (bottom) shows 
an interactive interface mockup with annotation screens for relevance rating, completeness assessment, and 
accuracy verification. 

4. Experimental Results and Analysis 

4.1. Threat Intelligence Extraction Performance 

4.1.1. Entity Extraction and Classification Results 

LLM-based entity extraction achieves strong performance across all indicator types, with substantial variation 
between model architectures and configurations. GPT-4 Turbo demonstrates superior extraction capability 
with micro-averaged F1 scores of 0.934 for IP addresses, 0.921 for domain names, 0.897 for file hashes, and 
0.884 for CVE identifiers. The model excels at handling context-dependent disambiguation, correctly 
distinguishing between legitimate infrastructure references and malicious indicators based on surrounding text 
semantics. Claude-3 Sonnet achieves comparable performance at 0.918 micro-averaged F1 across all entity 
types. The model's extended context window enables processing of lengthy APT reports without truncation. 
GPT-3.5 Turbo performance degrades to 0.856 F1, with notable challenges in novel indicator formats and 
zero-day vulnerability references lacking established CVE identifiers. Open-source models demonstrate 
competitive capabilities: Llama-3-70B reaches 0.881 F1 on entity extraction tasks, performing within 5% of 
commercial models while enabling local deployment. 
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Threat actor attribution extraction achieves 0.782 F1 averaged across models, constrained by ambiguous 
references and alias proliferation. Models correctly identify established groups (APT28, Lazarus Group) with 
0.89 F1 but struggle with emerging actors. Malware family extraction reaches 0.831 F1, with frequent errors 
on polymorphic variants. RAG integration provides substantial improvements: dense retrieval augmentation 
increases entity extraction F1 by 0.047 on average. Hybrid retrieval achieves 0.051 F1 improvement, 
demonstrating complementary benefits of semantic and lexical matching. 

Table 3: Entity Extraction Performance by Type and Model (F1 Scores) 

Entity Type GPT-4 Claude-3 GPT-3.5 Llama-3 Mistral-7B SecBERT Avg 

IP Address 0.934 0.928 0.891 0.906 0.847 0.782 0.881 

Domain 0.921 0.918 0.864 0.887 0.826 0.751 0.861 

File Hash 0.897 0.892 0.831 0.854 0.798 0.723 0.833 

CVE ID 0.884 0.879 0.847 0.862 0.814 0.756 0.840 

Threat Actor 0.824 0.817 0.751 0.778 0.712 0.646 0.755 

Malware 0.867 0.859 0.798 0.823 0.764 0.681 0.799 

Micro-Avg 0.906 0.902 0.850 0.872 0.814 0.731 0.846 

Error analysis identifies three primary failure modes affecting extraction accuracy. Boundary detection errors 
occur when models include extraneous tokens in extracted entities, capturing surrounding punctuation or 
adjacent words. Type classification errors arise from semantic ambiguity, such as email addresses 
misclassified as URLs. Novel entity variants present the most challenging failure mode: newly observed 
indicator formats, obfuscated domains using Punycode, and emerging hash algorithms absent from training 
data. 

4.1.2. TTP Mapping Accuracy Analysis 

MITRE ATT&CK technique mapping evaluates LLM understanding of adversary behaviors and attack 
sequences. GPT-4 Turbo achieves 0.867 accuracy in identifying primary techniques from threat descriptions, 
with 0.791 coverage measuring the proportion of ground-truth techniques successfully identified. Multi-
technique prediction accuracy reaches 0.823 when averaging across all relevant techniques per incident. 
Hierarchical evaluation reveals differential performance by specificity: tactic-level classification achieves 
0.912 accuracy, technique-level reaches 0.867, while sub-technique identification drops to 0.734. Chain-of-
thought prompting substantially improves TTP mapping by explicitly requesting reasoning about attack 
objectives. CoT increases accuracy by 0.094 over zero-shot baselines. RAG augmentation using MITRE 
ATT&CK knowledge graph integration provides significant benefits. Graph retrieval of technique 
descriptions, examples, and detection methods increases accuracy by 0.112 compared to non-RAG baselines. 

False positive analysis reveals models occasionally hallucinate techniques unsupported by evidence, with 
hallucination rates of 0.087 for GPT-4, 0.094 for Claude-3, and 0.156 for GPT-3.5. RAG grounding reduces 
hallucinations by 0.043 on average through factual retrieval validation. Confidence thresholding excluding 
predictions below 0.7 probability reduces false positives by 52% while sacrificing 11% recall. 

Table 4: TTP Mapping Performance Across Configurations 

Configuration Accuracy Coverage MAP@5 Hallucination Rate Avg Techniques 

GPT-4 Zero-Shot 0.867 0.791 0.824 0.087 3.4 

GPT-4 Few-Shot 0.889 0.867 0.856 0.071 4.1 

GPT-4 CoT 0.903 0.823 0.879 0.063 3.8 

GPT-4 + RAG 0.921 0.854 0.901 0.044 4.3 

Claude-3 + RAG 0.914 0.841 0.893 0.051 4.2 

Llama-3 + RAG 0.882 0.809 0.864 0.089 3.9 

4.1.3. Comparative Analysis Across Different Models 

Comprehensive model comparison reveals distinct performance-efficiency tradeoffs guiding deployment 
decisions. GPT-4 Turbo establishes the accuracy frontier with 0.906 micro-averaged F1 on entity extraction 
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and 0.921 TTP mapping accuracy using RAG configuration. Processing throughput reaches 127 documents 
per hour with API latency averaging 4.7 seconds per request. Claude-3 Sonnet achieves 98.5% of GPT-4's 
accuracy while demonstrating 23% faster throughput at 156 documents per hour. GPT-3.5 Turbo provides 
cost-effective baseline performance at substantially lower cost, enabling high-volume processing for less 
critical tasks. Llama-3-70B demonstrates the viability of open-source alternatives, achieving 0.872 F1 with 
local deployment. Elimination of API costs and data privacy concerns make this model attractive for sensitive 
intelligence processing. 

Figure 2: Model Performance vs. Inference Cost Analysis 

 

Figure 2 presents a scatter plot visualizing the accuracy-cost tradeoff across evaluated models and 
configurations. The x-axis represents total processing cost per 1,000 documents (logarithmic scale, $5 to 
$100), while the y-axis shows weighted average accuracy combining entity extraction F1 and TTP mapping 
accuracy (0.70 to 0.95). Point size encodes throughput (documents per hour), and color indicates model family 
(blue for GPT, green for Claude, orange for Llama, purple for Mistral, red for SecBERT). 

The Pareto frontier curve connects superior configurations: GPT-4+RAG anchors the high-accuracy extreme 
(0.924 accuracy, $42/1K docs, 127 docs/hr), Claude-3+RAG offers balanced performance (0.914 accuracy, 
$34/1K docs, 156 docs/hr), and GPT-3.5 baseline provides cost efficiency (0.850 accuracy, $8/1K docs, 284 
docs/hr). Llama-3-70B appears as an outlier below the cost axis (hardware-only deployment) at 0.872 
accuracy and 89 docs/hr throughput. Shaded regions denote operational zones: Production Deployment 
(accuracy >0.90, cost <$50/1K), Cost-Sensitive Processing (accuracy >0.85, cost <$15/1K), and High-
Volume Triage (throughput >200 docs/hr). Annotation boxes highlight key insights: GPT-4's 2.4% accuracy 
gain over Claude-3 costs 24% more, Llama-3 matches GPT-3.5 accuracy with zero API cost. 

4.2. Incident Response Automation Effectiveness 

4.2.1. Response Recommendation Quality Assessment 

LLM-generated incident response recommendations undergo multi-dimensional quality evaluation combining 
automated metrics and expert judgment. BLEU-4 scores measuring n-gram overlap with reference responses 
reach 0.637 for GPT-4, 0.619 for Claude-3, and 0.571 for GPT-3.5. ROUGE-L scores capturing longest 
common subsequences achieve 0.682, 0.671, and 0.623 respectively. Semantic similarity evaluation using 
Sentence-BERT embeddings yields higher correlations: 0.781 cosine similarity for GPT-4, 0.764 for Claude-
3, and 0.709 for GPT-3.5. Expert quality ratings on five-point Likert scales reveal nuanced performance 
dimensions. Relevance ratings average 4.2/5.0 for GPT-4, with 84% of recommendations rated highly relevant 
or relevant. Completeness scores average 3.8/5.0, indicating models typically identify 70-80% of necessary 
response actions. Accuracy ratings reach 4.4/5.0, with factual errors appearing in only 6% of generated 
recommendations. Actionability assessment evaluates whether recommendations provide sufficient detail for 
implementation. GPT-4 recommendations score 4.1/5.0, with 73% deemed directly actionable requiring no 
clarification. 
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Chain-of-thought prompting improves recommendation quality across all dimensions, increasing relevance 
scores by 0.3 points, completeness by 0.4 points, and actionability by 0.5 points. RAG integration retrieving 
historical incident playbooks and vendor-specific remediation guides substantially enhances response quality. 
Dense retrieval augmentation increases BLEU scores by 0.074 and expert relevance ratings by 0.5 points. 

4.2.2. Time Efficiency Improvement Analysis 

Quantitative time analysis compares LLM-assisted workflows against manual baseline analysis across 200 
simulated incident response scenarios. Baseline manual processing by experienced security analysts requires 
mean 47.3 minutes per incident, including initial triage, threat research, response planning, and 
documentation. LLM-assisted workflows reduce end-to-end processing to mean 17.1 minutes, representing 
63.8% time savings compared to manual baseline. Automated entity extraction eliminates 8.2 minutes of 
manual IoC identification. TTP mapping automation saves 6.4 minutes previously spent researching attack 
patterns. Response recommendation generation reduces planning time by 11.8 minutes. Residual analyst time 
distribution shifts toward high-value activities: validation consumes 41% of LLM-assisted time versus 28% 
manual. Incident complexity stratification reveals differential automation benefits. Simple incidents show 
71% time reduction (baseline 28.3 min to 8.2 min). Moderate complexity incidents achieve 64% reduction 
(baseline 51.7 min to 18.6 min). Complex incidents demonstrate 58% reduction (baseline 78.4 min to 32.9 
min). 

Table 5: Time Efficiency Analysis by Incident Complexity (minutes) 

Complexity N 
Manual 
Baseline 

LLM-
Assisted 

Time 
Saved 

% 
Reduction 

Triage Research Planning Review 

Simple 67 28.3 ± 8.4 8.2 ± 3.1 20.1 71% 2.1 1.8 2.7 1.6 

Moderate 98 
51.7 ± 
12.6 

18.6 ± 6.2 33.1 64% 4.2 3.7 6.1 4.6 

Complex 35 
78.4 ± 
21.3 32.9 ± 11.8 45.5 58% 7.8 6.4 11.3 7.4 

Average 200 
47.3 ± 
18.2 

17.1 ± 7.4 30.2 64% 4.1 3.5 5.8 3.7 

Throughput analysis measures daily incident processing capacity improvements. Manual analyst capacity 
averages 8.4 incidents per 8-hour shift. LLM augmentation increases capacity to 23.7 incidents per shift, 
representing 2.8x throughput multiplication. Accuracy-speed tradeoff analysis reveals minimal quality 
degradation from accelerated processing. Incidents processed via LLM assistance achieve 94.2% final 
accuracy versus 97.1% manual baseline. The 2.9 percentage point gap stems primarily from edge cases 
requiring specialized domain knowledge. 

4.3. Impact of Different Approaches 

4.3.1. Prompting Strategy Comparison 

Systematic prompting strategy evaluation isolates the impact of instruction design on LLM performance. 
Zero-shot prompting establishes baseline capabilities using task descriptions and format specifications without 
examples. Entity extraction achieves 0.876 F1 averaged across models. TTP mapping reaches 0.824 accuracy. 
Few-shot prompting with three curated examples improves entity extraction to 0.903 F1, with gains 
concentrated in challenging entity types. Threat actor extraction benefits most (+0.064 F1). TTP mapping 
accuracy increases to 0.867 (+0.043). Chain-of-thought prompting requesting explicit reasoning produces 
0.911 F1 entity extraction (+0.035 over baseline) and 0.889 TTP accuracy (+0.065). Structured output 
prompting enforcing JSON schema compliance achieves 0.908 F1 extraction (+0.032) through reduced 
parsing errors. Strategy combination yields additive benefits: few-shot plus chain-of-thought achieves 0.923 
F1 (+0.047 over baseline). Triple combination (few-shot + CoT + structured) produces maximum performance 
at 0.929 F1 but increases prompt token consumption by 340%. 

4.3.2. RAG Configuration Performance 

Retrieval Augmented Generation systematically addresses hallucination and knowledge staleness through 
grounding in external knowledge bases. Dense retrieval using FAISS over embedded document chunks 
improves entity extraction F1 by 0.047 averaged across models. Sparse retrieval via BM25 keyword matching 
achieves 0.039 F1 improvement, excelling on exact match scenarios. Hybrid retrieval combining normalized 
dense (weight: 0.6) and sparse (weight: 0.4) scores produces 0.051 F1 gain. Knowledge graph augmentation 
querying MITRE ATT&CK and CVE databases increases TTP mapping accuracy by 0.112 over non-RAG 
baselines. Retrieval quality metrics quantify context relevance. Precision@5 reaches 0.782 for dense retrieval. 
Mean Reciprocal Rank achieves 0.671. NDCG@10 scores 0.738. 
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Figure 3: RAG Configuration Impact on Accuracy and Hallucination Rate 

 

Figure 3 presents a dual-axis visualization analyzing RAG effectiveness across dimensions. The primary y-
axis shows F1 score improvements (0.00 to 0.12) while the secondary y-axis displays hallucination rate 
reductions (0.00 to 0.08). The x-axis categorizes six RAG configurations: No RAG (baseline), Dense 
Retrieval, Sparse Retrieval, Hybrid Retrieval, Knowledge Graph, and Full RAG (hybrid + graph). Grouped 
bar charts display results for three model families: GPT-4 (blue bars), Claude-3 (green bars), and Llama-3 
(orange bars). Each group shows two bars per configuration: solid bars represent F1 improvement over 
baseline, while hatched bars indicate hallucination rate reduction. The visualization reveals consistent 
patterns: all RAG configurations improve both metrics, with hybrid approaches outperforming single methods. 
GPT-4 benefits moderately from RAG (max +0.074 F1, -0.043 hallucination). Claude-3 shows intermediate 
gains (+0.089 F1, -0.051 hallucination). Llama-3 demonstrates largest improvements (+0.112 F1, -0.067 
hallucination). 

4.3.3. Error Analysis and Failure Cases 

Comprehensive error taxonomy categorizes LLM failures across three primary dimensions: extraction errors, 
reasoning errors, and hallucination errors. Extraction errors account for 47% of failures, subdivided into 
boundary detection issues (19%), type classification mistakes (16%), and missed entities (12%). Reasoning 
errors comprise 31% of failures, dominated by incorrect TTP mapping (18%) and flawed attack sequence 
reconstruction (13%). Hallucination errors constitute 22% of failures, categorized as factual hallucinations 
(11%), temporal hallucinations (6%), and relationship hallucinations (5%). RAG integration reduces 
hallucinations by 67% through factual grounding. Confidence calibration enables risk-based filtering: 
excluding predictions with probability <0.7 eliminates 73% of hallucinations while preserving 89% of correct 
outputs. 

5. Conclusion 

5.1. Summary of Key Findings 

5.1.1. Main Experimental Results 

This empirical study establishes the viability of Large Language Models for operational threat intelligence 
analysis and incident response automation. Quantitative evaluation across 1,500 real-world security artifacts 
demonstrates that state-of-the-art LLMs achieve F1 scores exceeding 0.90 for indicator extraction and 0.92 
for MITRE ATT&CK technique mapping when enhanced with Retrieval Augmented Generation. 
Comparative analysis reveals substantial architectural differences: GPT-4 and Claude-3 establish the accuracy 
frontier with minimal performance gap, while open-source Llama-3-70B achieves 96% of commercial model 
accuracy. Time efficiency measurements quantify 64% average reduction in incident response duration. 
Quality assessment reveals 84% of generated recommendations rated as relevant. 
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5.1.2. Practical Implications for Security Operations 

The experimental findings provide actionable guidance for organizations considering LLM deployment in 
security operations. Production deployment should prioritize RAG-enhanced configurations to ensure factual 
grounding and minimize hallucination risks. Model selection requires balancing accuracy, cost, and latency 
constraints. GPT-4 suits high-stakes analysis, while Claude-3 offers comparable performance with superior 
throughput. Llama-3 local deployment enables cost-effective operations at scale. Operational workflows 
should maintain human-in-the-loop validation for critical decisions. Confidence-based routing can automate 
high-certainty extractions while escalating ambiguous cases for analyst review. 

5.2. Limitations and Future Work 

5.2.1. Current Study Limitations 

Several constraints bound the generalizability and scope of our findings. Dataset limitations include English-
language focus excluding multilingual threat intelligence, temporal coverage restricted to 2022-2024, and 
geographic bias toward Western threat sources. The 1,500-document dataset represents a fraction of 
operational SOC volumes. Evaluation methodology limitations encompass reliance on expert annotations 
subject to individual bias. Experimental scope limitations include focus on batch processing excluding real-
time streaming analysis. 

5.2.2. Recommended Future Research Directions 

Extending this research requires addressing identified limitations while exploring emerging capabilities. 
Multilingual threat intelligence analysis demands cross-lingual model evaluation. Real-time processing 
research must optimize inference latency through model compression. Adversarial robustness investigation 
should evaluate LLM resilience against prompt injection. Multi-agent architectures coordinating specialized 
LLM instances warrant deeper exploration. 

5.2.3. Potential Extensions and Applications 

The demonstrated LLM capabilities enable numerous extensions beyond current scope. Proactive threat 
hunting applications could leverage LLM semantic understanding. Automated playbook generation could 
synthesize organization-specific response procedures. Threat intelligence sharing platforms could employ 
LLMs for automated anonymization. Educational applications include adaptive training systems and LLM-
powered threat simulation environments. 

5.3. Concluding Remarks 

Large Language Models represent a paradigm shift in threat intelligence analysis and incident response 
automation. This empirical study provides rigorous evidence supporting LLM deployment in operational 
security contexts while identifying critical challenges requiring continued research. The quantified efficiency 
gains, accuracy improvements, and cost tradeoffs enable informed decision-making. As LLM capabilities 
continue advancing, their role in cybersecurity operations will expand from analyst assistance tools to 
autonomous security agents. 
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