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Abstract

The exponential growth of cyber threats necessitates advanced automation in threat intelligence analysis and incident
response workflows. This empirical study investigates the application of Large Language Models (LLMs) across
critical security operations tasks, including threat intelligence extraction, TTP mapping, and automated response
generation. Through systematic evaluation of multiple LLM architectures on real-world cybersecurity datasets
comprising 1,000 threat intelligence reports and 500 incident records, we assess performance across entity
extraction, threat actor attribution, and remediation recommendation tasks. Our experimental results demonstrate
that LLMs achieve F1 scores exceeding 0.88 for Indicator of Compromise (loC) extraction and reduce incident
response time by 64% while maintaining 82% accuracy in MITRE ATT&CK technique mapping. The findings reveal
significant efficiency gains with RAG-enhanced configurations showing 19% performance improvement over
baseline approaches. This work provides empirical evidence supporting LLM deployment in security operations
centers and identifies critical challenges in production environments.
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1. Introduction
1.1. Research Background and Motivation
1.1.1. The Growing Challenge of Cyber Threat Intelligence Analysis

The contemporary threat landscape presents unprecedented challenges for cybersecurity professionals. Global
cybercrime damages reached $8 trillion in 2023, with ransomware attacks increasing by 95% year-over-
year[1]. Security Operations Centers (SOCs) process an average of 11,000 alerts daily, yet 67% remain
uninvestigated due to resource constraints. The volume and sophistication of Advanced Persistent Threats
(APTs) overwhelm traditional analysis capabilities, creating a critical gap between threat detection and
effective response. Threat intelligence analysis requires synthesizing inflgmation from diverse sources
including vulnerability databases, dark web forums, security advisories, and incident reports. The mean time
to identify a breach stands at 197 days, while containment requires an additional 69 days, resulting in
substantial financial and reputational damage[2].

1.1.2. Limitations of Traditional Manual Analysis Approaches

Conventional threat intelligence workflows rely heavily on manual effort and specialized expertise. Security
analysts spend approximately 53% of their time on repetitive tasks such as alert triage, IoC validation, and
report generation. The scarcity of skilled cybersecurity professionals, estimated at 3.4 million unfilled
positions globally, exacerbates the challenge. Traditional rule-based systems and signature-matching
approaches fail to detect zero-day exploits and polymorphic malware variants. Machine learning models
trained on limited labeled datasets struggle with the dynamic nature of cyber threats. Knowledge graph
construction for threat intelligence demands extensive manual curation to maintain accuracy and relevance.

1.2. Research Objectives and Scope
1.2.1. Primary Research Goals

This research aims to empirically evaluate the effectiveness of Large Language Models in automating threat
intelligence analysis and incident response workflows. We investigate LLM capabilities across three primary
dimensions: structured information extraction from unstructured threat reports, automated TTP mapping to
standardized frameworks, and generation of actionable response recommendations. The study examines
multiple LLM architectures under varying configuration settings to identify optimal deployment strategies for
production SOC environments.
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1.2.2. Key Research Questions

We address four fundamental research questions. RQ1 examines the accuracy of LLM-based entity extraction
for IoCs, threat actors, and malware families from diverse intelligence sources. RQ2 evaluates the
effectiveness of LLM-generated incident response recommendations in terms of relevance, completeness, and
actionability. RQ3 investigates the comparative performance of different prompting strategies including zero-
shot, few-shot, and chain-of-thought approaches. RQ4 analyzes the impact of Retrieval Augmented
Generation configurations on reducing hallucination and improving factual grounding.

1.2.3. Scope Definition and Boundaries

The research scope encompasses enterprise SOC workflows from initial threat detection through response
execution. We focus on English-language threat intelligence sources including CVE databases, security
vendor reports, CISA advisories, and underground forum discussions. The evaluation dataset spans threats
from 2022-2024, covering ransomware campaigns, APT activities, and supply chain attacks. The study
excludes real-time streaming analysis, focusing instead on batch processing scenarios typical of threat
intelligence platforms.

1.3. Contributions
1.3.1. Main Contributions of This Study

This work contributes to the cybersecurity research community through four key deliverables. We provide the
first comprehensive empirical evaluation of LLMs across the complete threat intelligence lifecycle,
encompassin% 1,500 real-world security artifacts. Our experimental framework enables reproducible
assessment of LLM performance on standardized metrics including precision, recall, and time efficiency. The
curated benchmark dataset, annotated by domain experts, establishes a foundation for future research in Al-
assisted security operations. Practical deployment guidelines derived from our findings offer actionable
insights for organizations considering LLM integration into existing security infrastructure.

2. Background and Related Work

2.1. Cyber Threat Intelligence Fundamentals
2.1.1. CTI Lifecycle and Key Components

Cyber Threat Intelligence operates through a cyclical process encompassing six phases: direction, collection,
processing, analysis, dissemination, and tfeedback. The direction phase establishes intelligence requirements
aligned with organizational risk profiles and security objectives. Collection aggregates data from technical
sources, human sources, and open sources. Processing transforms raw data into structured formats suitable for
analysis. Normalization procedures map disparate indicator types to standardized schemas such as STIX and
TAXII. The analysis phase correlates indicators, attributes threats to specific adversary groups, and extracts
actionable intelligenceError! Reference source not found..

2.1.2. Current CTI Analysis Practices and Challenges

Contemporary CTI analysis leverages platforms including MISP, OpenCTI, and commercial threat
intelligence feeds. Analysts utilize the MITRE ATT&CK framework to categorize adversary behaviors across
14 tactics and 188 techniques. The Diamond Model provides structure for analyzing intrusion events through
four core features: adversary, capability, infrastructure, and victim. Practical challenges include information
overload from high-volume indicator streams, false positive rates exceeding 90% in automated detection
systems, and the need for deep contextual understanding to distinguish genuine threats from benign
anomalies[3].

2.2. Large Language Models in Cybersecurity
2.2.1. Evolution of LLMs and Their Capabilities

Lar]%e Language Models have evolved from early transformer architectures like BERT and GPT-2 to
sophisticated systems including GPT-4, Claude, and domain-specialized variants[4]. The scaling hypothesis
demonstrates that increasing model parameters and training data yields emergent capabilities in complex
reasoning, few-shot learning, and instruction following. Contemporary LLMs process millions of tokens,
enabling analysis of lengthy threat reports and technical documentation. Pre-training on diverse corpora
provides LLMs with broad knowledge of security concepts, vulnerability patterns, and attack methodologies.

2.2.2. Domain Adaptation Techniques for Security Applications

Adapting general-purpose LLMs to cybersecurity domains employs multiple strategies. Continued pre-
training on security-specific corpora including CVE descriptions, exploit databases, and malware analysis
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reports builds domain knowledge[5]. Parameter-efficient fine-tuning methods such as LoRA enable task-
specific optimization without full model retraining. Prompt engineering techniques including few-shot
examples and chain-of-thought reasoning improve zero-shot performance on novel threat scenarios. RAG
architectures integrate vector databases of authoritative security knowledge with LLM inference.

2.2.3. Existing LLM Applications in Threat Analysis

Recent research demonstrates LLM applications across multiple threat intelligence tasks. Automated report
generation systems produce human-readable summaries from technical indicators and attack telemetry[6].
Entity extraction pipelines identify IoCs, malware families, and vulnerability references from unstructured
text with precision exceeding traditional NER systems. TTP mapping algorithms correlate security events
with MITRE ATT&CK techniques using semantic understanding of attacker behaviors. Knowledge graph
construction frameworks leverage LLMs for relation extraction and ontology population. Multi-agent
architectures distribute specialized analysis tasks across collaborating LLM instances.

2.3. Related Research and Gap Analysis
2.3.1. Recent Studies on LLM-based Threat Intelligence

Comprehensive surveys characterize the application landscape of LLMs in cybersecurity. Systematic literature
reviews analyze 300+ publications covering defensive applications, offensive capabilities, and security
implications of LLM deploymentError! Reference source not found.. Evaluation frameworks assess LLM
performance on malware detection, vulnerability identification, and threat hunting tasks. Empirical studies
mvestigate specific applications: cybercrime forum analysis demonstrates 96% accuracy in extracting threat
indicators from dark web discussions. Automated CTI reporting systems generate analyst-reviewed
intelligence products with 85% acceptance rates. Knowledge graph construction pipelines achieve 89% entity
extraction precision on diverse threat intelligence sources[7].

2.3.2. Identified Research Gaps

Despite growing research interest, significant gaps remain in understanding LLM capabilities and limitations
for production security operations[8]. Existing studies focus predominantly on isolated tasks rather than end-
to-end workflows encompassing detection through response. Evaluation datasets lack standardization,
complicating cross-study comparisons and reproducibility. Limited investigation of failure modes,
hallucination rates, and adversarial robustness constrains deployment confidence. Few studies quantify
operational metrics including time savings, analyst effort reduction, and false positive rates in realistic SOC
scenarios[9]. This research addresses these gaps through systematic empirical evaluation across diverse
models, tasks, and configuration parameters.

3. Methodology

3.1. Experimental Framework Design
3.1.1. Overall Architecture of the Evaluation Framework

The experimental framework implements a four-stage pipeline supporting comprehensive LLM evaluation
across threat intelligence and incident response tasks. The architecture comprises data ingestion, LLM
processing, automated evaluation, and human validation components. Data ingestion modules parse diverse
mput formats including JSON, XML, and plain text from CVE databases, security vendor reports, and incident
documentation[10]. Preprocessing standardizes text encoding, removes formatting artifacts, and segments
documents into analyzable units. The LLM processing layer provides unified interfaces to multiple model
endpoints including OpenAl GPT-4, Anthropic Claude-3, and open-source variants deployed via local
inference servers. Request orchestration manages prompt construction, context window optimization, and
batch processing. RAG integration connects vector databases (FAISS) and knowledge graphs (Neo4j with
MITRE ATT&CK ontology) for context retrieval. Output parsers extract structured data from LLM responses,
handling both JSON-formatted and natural language outputs.

Automated evaluation compares LLM outputs against expert-annotated ground truth using precision, recall,
Fl-score, and BLEU metrics. Entity matching employs fuzzy string comparison and semantic similarity
measures to accommodate surface form variations. TTP mapping validation checks correctness of MITRE
technique identifications and assesses completeness of tactic coverage. Human validation interfaces enable
security analysts to review LLM outputs through a web-based annotation platform. Evaluators rate response
quality across five dimensions: relevance, completeness, accuracy, actionability, and clarity.

3.1.2. Evaluation Metrics and Criteria
Performance assessment employs task-specific metrics aligned with operational requirements. Entity

extraction evaluation calculates micro-averaged precision, recall, and F1-score across 1oC types (IP addresses,
domains, file hashes, CVE identifiers)[11]. Strict matching requires exact string correspondence, while
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relaxed matching accepts partial overlaps for compound entities. TTP mapping accuracy measures the
percentage of correctly identified MITRE ATT&CK techniques among all predicted techniques. Coverage
quantifies the proportion of relevant techniques identified from ground truth. Mean Average Precision (MAP)
at various cutoff thresholds evaluates ranking quality when models predict multiple candidate techniques.
Response recommendation quality assessment combines automated metrics and human judgment. BLEU and
ROUGE scores measure textual similarity to reference responses. Expert ratings on 1-5 Likert scales capture
qualitative dimensions including clarity, specificity, and feasibility. Time efficiency metrics compare LLM-
assisted workflows against manual baselines, measuring end-to-end processing duration and analyst
interaction time.

3.2. Dataset Collection and Preparation
3.2.1. Data Sources and Collection Strategy

The evaluation dataset aggregates 1,500 cybersecurity artifacts from four primary source categories, selected
to represent operational dglversity in SOC workflows. Public vulnerability databases contribute 500 records
including CVE descriptions from NIST National Vulnerability Database, vendor security advisories from
Microsoft, Cisco, and Oracle, and exploit documentation from Exploit-DB. Government threat intelligence
includes 250 CISA alerts, FBI flash reports, and NCSC threat assessments covering nation-state activities and
critical infrastructure targeting. Security vendor reports comprise 400 documents from CrowdStrike,
Mandiant, and Recorded Future, detailing APT campaigns, malware analysis, and threat actor profiles.
Underground forum discussions provide 200 samples from monitored cybercrime marketplaces. Incident
response reports contribute 150 anonymized case studies from enterprise security incidents.

Temporal coverage spans January 2022 through December 2024, capturing evolving threat patterns including
the emergence of ChatGPT-enabled social engineering, exploitation of critical vulnerabilities, and escalation
of ransomware-as-a-service operations. Threat type distribution ensures balanced representation: ransomware
(28%), APT activities (24%), supply chain attacks (18%), phishing campaigns (16%), and cryptomining
malware (14%).

3.2.2. Annotation Protocol and Quality Control

Expert annotation employs a rigorous three-phase protocol ensuring dataset quality and consistency. Initial
annotation by two independent cybersecurity analysts with 5+ years of SOC experience labels entities,
relationships, and response recommendations according to detailed guidelines. Entity annotation identifies
and classifies [oCs, threat actors, malware families, vulnerabilities, and attack techniques. Relationship
annotation captures semantic connections between entities, including exploits, attributed to, and indicates
relationships. TTP annotation maps attack behaviors to MITRE ATT&CK techniques and sub-techniques,
supporting multiple mappings when applicable. Adjudication resolves annotation disagreements through
structured discussion guided by domain experts. Inter-annotator agreement achieves Cohen's kappa of 0.84
for entity recognition, 0.79 for TTP mapping, and 0.81 for response recommendations[12].

3.2.3. Dataset Statistics and Characteristics

The curated dataset exhibits diverse characteristics reflecting real-world threat intelligence complexity.
Document length distribution ranges from 156 to 8,742 tokens (mean: 2,341, median: 1,876), accommodating
both concise alerts and comprehensive analysis reports. Entity density averages 23.7 entities per document,
with variance across source types: CVE descriptions (14.2), APT reports (38.9), and forum posts (19.3). TTP
coverage spans all 14 MITRE ATT&CK tactics, with uneven distribution reflecting attacker preferences:
executi(oln1 (411(%;.;%), persistence (14.3%), privilege escalation (12.8%), defense evasion (16.2%), and credential
access (11.4%).

Table 1: Dataset Statistics and Characteristics

CVE Vendor Gov. Forum Incident
Category Reports Reports Alerts Posts Reports Total
Documents 500 400 250 200 150 1,500
Avg Tokens 1,124 3,456 2,018 987 4,231 2,341
IoC Count 7,234 15,621 9,847 4,156 11,234 48,092
Threat Actors 89 247 156 124 98 714
Malware Families 234 512 298 187 345 1,576
ATT&CK
Techniques 1,245 2,876 1,654 892 2,134 8,801
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3.3. LLM Configuration and Experimental Setup
3.3.1. Selected Models and Configuration Parameters

The experimental design evaluates six LLM architectures representing diverse capabilities, scales, and
deployment models. GPT-4 Turbo (gpt-4-1106-preview) provides state-of-the-art performance with 128K
token context window, accessed via OpenAl API with temperature 0.1 for reproducibility. Claude-3 Sonnet
balances capability and efficiency with 200K context window, configured at temperature 0.0 for deterministic
outputs. GPT-3.5 Turbo offers cost-effective baseline performance with 16K context window. Open-source
models enable local deployment and customization: Llama-3-70B-Instruct represents large open models with
8K context, deployed on NVIDIA A100 GPUs using vLLM inference optimization. Mistral-7B-Instruct-v0.2
demonstrates capabilities of smaller parameter-efficient models, quantized to 4-bit precision via GPTQ.
SecBERT, a BERT-large variant continually pre-trained on security corpora, serves as specialized baseline
for comparison.

Model inference employs consistent hyperparameters across architectures where applicable: temperature
range 0.0-0.3, top-p sampling at 0.95, maximum output tokens 2048 for extraction tasks and 1024 for
classification. Hardware infrastructure comprises GPU servers with 8x NVIDIA A100 80GB for local model
inference, 512GB RAM supporting large batch processing, and NVMe storage for dataset caching[13].

3.3.2. Prompting Strategies and RAG Implementation

Prompting strategy exploration encompasses four primary approaches optimized through iterative refinement.
Zero-shot prompting establishes baseline performance with task instructions and output format specifications
but no examples. Few-shot prompting provides 3-shot examples demonstrating desired extraction format,
entity typing, and TTP mapping conventions, selected to represent diverse threat types and complexity levels.
Chain-of-thought prompting encourages step-by-step reasoning by instructing models to first identify relevant
text spans, classify entity types, and explain mapping rationale before producing final outputs. Structured
output prompting enforces JSON schema compliance through explicit formatting instructions and validation
examples.

RAG implementation integrates three retrieval strategies evaluated independently and in combination. Dense
retrieval employs FAISS approximate nearest neighbor search over embedded document chunks (512 tokens,
128 overlap), retrieving top-5 most semantically similar passages for each query. Sparse retrieval uses BM25
ranking over TF-IDF representations, capturing exact keyword matches. Hybrid retrieval combines
normalized dense and sparse scores with learned fusion weights (alpha=0.6 for dense, 0.4 for sparse).
Knowledge graph retrieval queries Neo4j via Cypher statements, traversing relationships from identified
entities to gather contextual information.

Table 2: Experimental Configuration Matrix

Model Parameters Context %ﬁ:‘:’ ISTEY)V{ CoT Structured RAG l]i(l)ltli‘sl
GPT-4 Turbo ~1.7T 128K v v v v v 5
Claude-3 Sonnet ~500B 200K v v v v v 5
GPT-3.5 Turbo ~175B 16K v v v v v 5
Llama-3-70B 70B 8K v v v v v 5
Mistral-7B 7B 8K v v X v v 4
SecBERT 340M 512 v X X X X 1

Figure 1 illustrates the complete experimental pipeline from data ingestion through evaluation. The diagram
depicts four primary modules arranged in sequential flow with feedback loops. The Data Ingestion Module
(top) shows parallel processing streams for CVE databases, vendor reports, government alerts, forum posts,
an(g) incident reports, each feeding into a central preprocessing unit that performs tokenization, normalization,
and chunking. Color coding distinguishes data source types: blue for public databases, green for vendor
intelligence, orange for government sources, purple for underground forums, and red for incident data.

The LLM Processing Module (middle-left) displays a hub-and-spoke architecture with a central prompt
construction engine connecting to six model endpoints. Each endpoint box contains the model name,
parameter count, and context window size. Arrows indicate bidirectional communication for request dispatch
and response collection. The RAG subsystem apﬁears as an integrated component, showing connections to
the vector database (represented as a cylinder with FAISS icon), knowledge graph (represented as a network
node diagram), and hybrid retrieval coordinator.
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Figure 1: Experimental Framework Architecture
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The Automated Evaluation Module (middle-right) presents three parallel evaluation tracks: entity extraction
metrics (precision, recall, F1), TTP mapping accuracy (technique correctness, coverage, MAP), and response
quality (BLEU, ROUGE, action alignment). Each track feeds into a results aggregation component that
generates performance matrices and comparative visualizations. Ground truth data flows from the annotation
database into comparison units within each evaluation track. The Human Validation Module (bottom) shows
an interactive interface mockup with annotation screens for relevance rating, completeness assessment, and
accuracy verification.

4. Experimental Results and Analysis

4.1. Threat Intelligence Extraction Performance
4.1.1. Entity Extraction and Classification Results

LLM-based entity extraction achieves strong performance across all indicator types, with substantial variation
between model architectures and configurations. GPT-4 Turbo demonstrates superior extraction capability
with micro-averaged F1 scores of 0.934 for IP addresses, 0.921 for domain names, 0.897 for file hashes, and
0.884 for CVE 1dentifiers. The model excels at handling context-dependent disambiguation, correctly
distinguishing between legitimate infrastructure references and malicious indicators based on surrounding text
semantics. Claude-3 Sonnet achieves comparable performance at 0.918 micro-averaged F1 across all entity
types. The model's extended context window enables processing of lengthy APT reports without truncation.
GPT-3.5 Turbo performance degrades to 0.856 F1, with notabﬁa challenges in novel indicator formats and
zero-day vulnerability references lacking established CVE identifiers. Open-source models demonstrate
competitive capabilities: Llama-3-70B reaches 0.881 F1 on entity extraction tasks, performing within 5% of
commercial models while enabling local deployment.
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Threat actor attribution extraction achieves 0.782 F1 averaged across models, constrained by ambiguous
references and alias proliferation. Models correctly identify established groups (APT28, Lazarus Group) with
0.89 F1 but struggle with emerging actors. Malware family extraction reaches 0.831 F1, with frequent errors
on polymorphic variants. RAG integration provides substantial improvements: dense retrieval augmentation
increases entity extraction F1 by 0.047 on average. Hybrid retrieval achieves 0.051 F1 improvement,
demonstrating complementary benefits of semantic and lexical matching.

Table 3: Entity Extraction Performance by Type and Model (F1 Scores)

Entity Type GPT-4 Claude-3 GPT-3.5 Llama-3 Mistral-’B SecBERT Avg

IP Address 0.934 0.928 0.891 0.906 0.847 0.782 0.881
Domain 0.921 0.918 0.864 0.887 0.826 0.751 0.861
File Hash 0.897 0.892 0.831 0.854 0.798 0.723 0.833
CVEID 0.884 0.879 0.847 0.862 0.814 0.756 0.840
Threat Actor 0.824 0.817 0.751 0.778 0.712 0.646 0.755
Malware 0.867 0.859 0.798 0.823 0.764 0.681 0.799
Micro-Avg 0.906 0.902 0.850 0.872 0.814 0.731 0.846

Error analysis identifies three primary failure modes affecting extraction accuracy. Boundary detection errors

occur when models include extraneous tokens in extracted entities, capturing surrounding punctuation or

adjacent words. Type classification errors arise from semantic ambiguity, such as email addresses

misclassified as URLs. Novel entity variants present the most challenging failure mode: newly observed

andlcator formats, obfuscated domains using Punycode, and emerging hash algorithms absent from training
ata.

4.1.2. TTP Mapping Accuracy Analysis

MITRE ATT&CK technique mapping evaluates LLM understanding of adversary behaviors and attack
sequences. GPT-4 Turbo achieves 0.867 accuracy in identifying primary techniques from threat descriptions,
with 0.791 coverage measuring the proportion of ground-truth techniques successfully identified. Multi-
technique prediction accuracy reaches 0.823 when averaging across all relevant techniques per incident.
Hierarchical evaluation reveals differential performance by specificity: tactic-level classification achieves
0.912 accuracy, technique-level reaches 0.867, while sub-technique identification drops to 0.734. Chain-of-
thought prompting substantially improves TTP mapping by explicitly requesting reasoning about attack
objectives. CoT increases accuracy by 0.094 over zero-shot baselines. RAG augmentation using MITRE
ATT&CK knowledge graph integration provides significant benefits. Graph retrieval of technique
descriptions, examples, and detection methods increases accuracy by 0.112 compared to non-RAG baselines.

False positive analysis reveals models occasionally hallucinate techniques unsupported by evidence, with
hallucination rates of 0.087 for GPT-4, 0.094 for Claude-3, and 0.156 for GPT-3.5. RAG grounding reduces
hallucinations by 0.043 on average through factual retrieval validation. Confidence thresholding excluding
predictions below 0.7 probability reduces false positives by 52% while sacrificing 11% recall.

Table 4: TTP Mapping Performance Across Configurations

Configuration Accuracy Coverage MAP@S Hallucination Rate Avg Techniques
GPT-4 Zero-Shot  0.867 0.791 0.824 0.087 34
GPT-4 Few-Shot 0.889 0.867 0.856 0.071 4.1
GPT-4 CoT 0.903 0.823 0.879 0.063 3.8
GPT-4 + RAG 0.921 0.854 0.901 0.044 4.3
Claude-3 + RAG 0.914 0.841 0.893 0.051 4.2
Llama-3 + RAG 0.882 0.809 0.864 0.089 3.9

4.1.3. Comparative Analysis Across Different Models

Comprehensive model comparison reveals distinct performance-efficiency tradeoffs guiding deployment
decisions. GPT-4 Turbo establishes the accuracy frontier with 0.906 micro-averaged F1 on entity extraction
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and 0.921 TTP mapping accuracy using RAG configuration. Processing throughput reaches 127 documents
per hour with API latency averaging 4.7 seconds per request. Claude-3 Sonnet achieves 98.5% of GPT-4's
accuracy while demonstrating 23% faster throughput at 156 documents per hour. GPT-3.5 Turbo provides
cost-effective baseline performance at substantially lower cost, enabling high-volume processing for less
critical tasks. Llama-3-70B demonstrates the viability of open-source alternatives, achieving 0.872 F1 with
local deployment. Elimination of API costs and data privacy concerns make this model attractive for sensitive
intelligence processing.

Figure 2: Model Performance vs. Inference Cost Analysis
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Figure 2 presents a scatter plot visualizing the accuracy-cost tradeoff across evaluated models and
configurations. The x-axis represents total processing cost per 1,000 documents (logarithmic scale, $5 to
$100), while the y-axis shows weighted average accuracy combining entity extraction F1 and TTP mapping
accuracy (0.70 to 0.95). Point size encodes throughput (documents per hour), and color indicates model family
(blue for GPT, green for Claude, orange for Llama, purple for Mistral, red for SecBERT).

The Pareto frontier curve connects superior configurations: GPT-4+RAG anchors the high-accuracy extreme
0.924 accuracy, $42/1K docs, 127 docs/hr), Claude-3+RAG offers balanced performance (0.914 accuracy,
34/1K docs, 156 docs/hr), and GPT-3.5 baseline provides cost efficiency (0.850 accuracy, $8/1K docs, 284

docs/hr). Llama-3-70B appears as an outlier below the cost axis (hardware-only deployment) at 0.872

accuracy and 89 docs/hr throughput. Shaded regions denote operational zones: Production Deployment

(accuracy >0.90, cost <$50/1K), Cost-Sensitive Processing (accuracy >0.85, cost <$§15/1K), and High-

Volume Triage (throughput >200 docs/hr). Annotation boxes highlight key insights: GPT-4's 2.4% accuracy

gain over Claude-3 costs 24% more, Llama-3 matches GPT-3.5 accuracy with zero API cost.

4.2. Incident Response Automation Effectiveness
4.2.1. Response Recommendation Quality Assessment

LLM-generated incident response recommendations undergo multi-dimensional quality evaluation combining
automated metrics and expert judgment. BLEU-4 scores measuring n-gram overlap with reference responses
reach 0.637 for GPT-4, 0.619 for Claude-3, and 0.571 for GPT-3.5. ROUGE-L scores capturing longest
common subsequences achieve 0.682, 0.671, and 0.623 respectively. Semantic similarity evaluation using
Sentence-BERT embeddings yields higher correlations: 0.781 cosine similarity for GPT-4, 0.764 for Claude-
3, and 0.709 for GPT-3.5. Expert quality ratings on five-point Likert scales reveal nuanced performance
dimensions. Relevance ratings average 4.2/5.0 for GPT-4, with 84% of recommendations rated highly relevant
or relevant. Completeness scores average 3.8/5.0, indicating models typically identify 70-80% of necessary
response actions. Accuracy ratings reach 4.4/5.0, with factual errors appearing in only 6% of generated
recommendations. Actionability assessment evaluates whether recommendations provide sufficient detail for
irflp}fqmentation. GPT-4 recommendations score 4.1/5.0, with 73% deemed directly actionable requiring no
clarification.
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Chain-of-thought prompting improves recommendation quality across all dimensions, increasing relevance
scores by 0.3 points, completeness by 0.4 points, and actionability by 0.5 points. RAG integration retrieving
historical incident playbooks and vendor-specific remediation guides substantially enhances response quality.
Dense retrieval augmentation increases BLEU scores by 0.074 and expert relevance ratings by 0.5 points.

4.2.2. Time Efficiency Improvement Analysis

Quantitative time analysis compares LLM-assisted workflows against manual baseline analysis across 200
simulated incident response scenarios. Baseline manual processing by experienced security analysts requires
mean 47.3 minutes per incident, including initial triage, threat research, response planning, and
documentation. LLM-assisted workflows reduce end-to-end processing to mean 17.1 minutes, representing
63.8% time savings compared to manual baseline. Automated entity extraction eliminates 8.2 minutes of
manual [oC identification. TTP mapping automation saves 6.4 minutes previously spent researching attack
patterns. Response recommendation generation reduces planning time by 11.8 minutes. Residual analyst time
distribution shifts toward high-value activities: validation consumes 41% of LLM-assisted time versus 28%
manual. Incident complexity stratification reveals differential automation benefits. Simple incidents show
71% time reduction (baseline 28.3 min to 8.2 min). Moderate complexity incidents achieve 64% reduction
(b_as)eline 51.7 min to 18.6 min). Complex incidents demonstrate 58% reduction (baseline 78.4 min to 32.9
min).

Table 5: Time Efficiency Analysis by Incident Complexity (minutes)

. Manual LLM- Time % . . .
Complexity N Baseline  Assisted Saved Reduction lIriage Research Planning Review
Simple 67 283%84 82%31 201 7% 21 18 2.7 16
Moderaste 98 337 * 186+62 331  64% 42 37 6.1 4.6

78.4 £ 0
Complex 35 1973 329+11.8 455  58% 78 64 11.3 7.4
Average 200 113 T 17.1£74 302 64% 41 35 5.8 3.7

Throughput analysis measures daily incident processing capacity improvements. Manual analyst capacity
averages 8.4 incidents per 8-hour shift. LLM augmentation increases capacity to 23.7 incidents per shift,
representing 2.8x throughput multiplication. Accuracy-speed tradeoff analysis reveals minimal quality
degradation from accelerated processing. Incidents processed via LLM assistance achieve 94.2% final
accuracy versus 97.1% manua{3 baseline. The 2.9 percentage point gap stems primarily from edge cases
requiring specialized domain knowledge.

4.3. Impact of Different Approaches
4.3.1. Prompting Strategy Comparison

Systematic prompting strategy evaluation isolates the impact of instruction design on LLM performance.
Zero-shot prompting establishes baseline capabilities using task descriptions and format specifications without
examples. Entity extraction achieves 0.876 F1 averaged across models. TTP mapping reaches 0.824 accuracy.
Few-shot prompting with three curated examples improves entity extraction to 0.903 FI1, with gains
concentrated in challenging entity types. Threat actor extraction benefits most (+0.064 F1). TTP mapping
accuracy increases to 0.867 (+0.043). Chain-of-thought prompting requesting explicit reasoning produces
0.911 F1 entity extraction (+0.035 over baseline) and 0.889 TTP accuracy (+0.065). Structured output
prompting enforcing JSON schema compliance achieves 0.908 F1 extraction (+0.032) through reduced
parsing errors. Strategy combination yields additive benefits: few-shot plus chain-of-thought achieves 0.923
F1 (+0.047 over baseline). Triple combination (few-shot + CoT + structured) produces maximum performance
at 0.929 F1 but increases prompt token consumption by 340%.

4.3.2. RAG Configuration Performance

Retrieval Augmented Generation systematically addresses hallucination and knowledge staleness through
grounding in external knowledge bases. Dense retrieval using FAISS over embedded document chunks
improves entity extraction F1 by 0.047 averaged across models. Sparse retrieval via BM25 keyword matching
achieves 0.039 F1 improvement, excelling on exact match scenarios. Hybrid retrieval combining normalized
dense (weight: 0.6) and sparse (weight: 0.4) scores produces 0.051 F1 gain. Knowledge graph augmentation
querying MITRE ATT&CK and CVE databases increases TTP mapping accuracy by 0.112 over non-RAG
baselines. Retrieval quality metrics quantify context relevance. Precis1oné5 reaches 0.782 for dense retrieval.
Mean Reciprocal Rank achieves 0.671. NDCG@10 scores 0.738.
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Figure 3: RAG Configuration Impact on Accuracy and Hallucination Rate

Model Family Key Findings
012 - GPT-4 Turbo  All RAG configurations improve both F1 score
: - Claude-3 Sonnet and reduce hallucination rates consistently
* Llama-3 benefits most from RAG (+0.112 F1, 112
[ vlama-3-708 -0.067 hallucination in Full RAG) |
Bar Type
0.10 - Solid: F1 Improvement
l:l Hatched: Hall. Reduction .095 0.09
.089
€ 0.08
o 074 07 0
£ .
s 065
° ’ 0 0.06
g 0.06
E .053
S .0
77} .04 041
T 004 036 '
.034
028 0.03
0.02
0.00 0.00
No RAG Dense Sparse Hybrid Knowledge Full RAG
(Baseline) Retrieval Retrieval Retrieval Graph (Hybrid+KG)

RAG Configuration

Figure 3 presents a dual-axis visualization analyzing RAG effectiveness across dimensions. The primary y-
axis shows F1 score improvements (0.00 to 0.12) while the secondary y-axis displays hallucination rate
reductions (0.00 to 0.08). The x-axis categorizes six RAG configurations: No RAG (baseline), Dense
Retrieval, Sparse Retrieval, Hybrid Retrieval, Knowledge Graph, and Full RAG (hybrid + graph). Grouped
bar charts display results for three model families: GPT-4 (blue bars), Claude-3 (green bars), and Llama-3
(orange bars). Each group shows two bars per configuration: solid bars represent F1 improvement over
baseline, while hatched bars indicate hallucination rate reduction. The visualization reveals consistent
patterns: all RAG configurations improve both metrics, with hybrid approaches outperforming single methods.
GPT-4 benefits moderately from RAG (max +0.074 F1, -0.043 hallucination). Claude-3 shows intermediate
gains (+0.089 F1, -0.051 hallucination). Llama-3 demonstrates largest improvements (+0.112 F1, -0.067
hallucination).

4.3.3. Error Analysis and Failure Cases

Comprehensive error taxonomy categorizes LLM failures across three primary dimensions: extraction errors,
reasoning errors, and hallucination errors. Extraction errors account for 47% of failures, subdivided into
boundary detection issues (19%), type classification mistakes (16%), and missed entities (12%). Reasoning
errors comprise 31% of failures, dominated by incorrect TTP mapping (18%) and flawed attack sequence
reconstruction (13%). Hallucination errors constitute 22% of failures, categorized as factual hallucinations
(11%), temporal hallucinations (6%), and relationship hallucinations (5%). RAG integration reduces
hallucinations by 67% through factual grounding. Confidence calibration enables risk-based filtering:
excluding predictions with probability <0.7 eliminates 73% of hallucinations while preserving 89% of correct
outputs.

5. Conclusion

5.1. Summary of Key Findings
5.1.1. Main Experimental Results

This empirical study establishes the viability of Large Language Models for operational threat intelligence
analysis and incident response automation. Quantitative evaluation across 1,500 real-world security artifacts
demonstrates that state-of-the-art LLMs achieve F1 scores exceeding 0.90 for indicator extraction and 0.92
for MITRE ATT&CK technique mapping when enhanced with Retrieval Augmented Generation.
Comparative analysis reveals substantial architectural differences: GPT-4 and Claude-3 establish the accuracy
frontier with minimal performance gap, while open-source Llama-3-70B achieves 96% of commercial model
accuracy. Time efficiency measurements quantify 64% average reduction in incident response duration.
Quality assessment reveals 84% of generated recommendations rated as relevant.
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5.1.2. Practical Implications for Security Operations

The experimental findings provide actionable guidance for organizations considering LLM deployment in
security operations. Production deployment should prioritize RAG-enhanced configurations to ensure factual
grounding and minimize hallucination risks. Model selection requires balancing accuracy, cost, and latency
constraints. GPT-4 suits high-stakes analysis, while Claude-3 offers comparable performance with superior
throughput. Llama-3 local deployment enables cost-effective operations at scale. Operational workflows
should maintain human-in-the-loop validation for critical decisions. Confidence-based routing can automate
high-certainty extractions while escalating ambiguous cases for analyst review.

5.2. Limitations and Future Work
5.2.1. Current Study Limitations

Several constraints bound the generalizability and scope of our findings. Dataset limitations include English-
language focus excluding multilingual threat intelligence, temporal coverage restricted to 2022-2024, and
geographic bias toward Western threat sources. The 1,500-document dataset represents a fraction of
operational SOC volumes. Evaluation methodology limitations encompass reliance on expert annotations
subject to individual bias. Experimental scope limitations include focus on batch processing excluding real-
time streaming analysis.

5.2.2. Recommended Future Research Directions

Extending this research requires addressing identified limitations while exploring emerging capabilities.
Multilingual threat intelligence analysis demands cross-lingual model evaluation. Real-time processing
research must optimize inference latency through model compression. Adversarial robustness investigation
should evaluate LLM resilience against prompt injection. Multi-agent architectures coordinating specialized
LLM instances warrant deeper exploration.

5.2.3. Potential Extensions and Applications

The demonstrated LLM capabilities enable numerous extensions beyond current scope. Proactive threat
hunting applications could leverage LLM semantic understanding. Automated playbook generation could
synthesize organization-specific response procedures. Threat intelligence sharing platforms could employ
LLMs for automated anonymization. Educational applications include adaptive training systems and LLM-
powered threat simulation environments.

5.3. Concluding Remarks

Large Language Models represent a paradigm shift in threat intelligence analysis and incident response
automation. This empirical study provides rigorous evidence supporting LLM deployment in operational
security contexts while identifying critical challenges requiring continued research. The quantified efficiency
gains, accuracy improvements, and cost tradeoffs enable informed decision-making. As LLM capabilities
continue advancing, their role in cybersecurity operations will expand from analyst assistance tools to
autonomous security agents.
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