
 

COMPUTING INNOVATIONS AND APPLICATIONS 

ISSN: 3068-5516 88 

 

 
 Open Access 

Deep Learning in Cardiovascular CT Imaging: Evolution, Trends, 

and Clinical Translation from 2020 to 2025 

Fan Zhang1, Zejun Cheng1.2, Vanessa Holloway2 

1 Computer Science, University of Southern California, CA, USA 
1.2 Internal Medicine, Capital Medical University, Beijing, China  
2 Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA 

DOI: 10.63575/CIA.2024.20209 

A b s t r a c t   

Cardiovascular diseases remain the leading cause of mortality worldwide, necessitating advanced diagnostic 

approaches. Deep learning has revolutionized cardiac computed tomography (CT) imaging analysis over the past 

five years, transforming from experimental algorithms to clinically validated tools. This review examines the 

architectural evolution from convolutional neural networks to transformer-based models, analyzing their application 

across anatomical segmentation, coronary artery analysis, and functional risk assessment. We synthesize findings 

from 15 high-impact studies published between 2020 and 2025, documenting performance improvements in cardiac 

chamber segmentation (Dice coefficients 0.88-0.95), stenosis detection (sensitivity 90-97%), and mortality risk 

prediction (C-index 0.70-0.82). Technical challenges including limited annotated datasets, cross-scanner 

generalization, and regulatory barriers continue to impede widespread clinical adoption. Emerging foundation 

models and multimodal integration represent promising directions for next-generation cardiovascular AI systems. 

K e y w o r d s :  Deep learning, Cardiovascular CT imaging, Convolutional neural networks, Transformer 

architectures, Clinical translation 

1. Introduction 

1.1. Clinical Significance of Cardiovascular CT Imaging 

1.1.1. Prevalence of cardiovascular diseases and diagnostic needs 

Cardiovascular diseases account for approximately 31% of global deaths annually, with coronary artery 
disease representing the predominant etiology. The escalating disease burden has driven demand for accurate, 
non-invasive diagnostic modalities capable of early detection and risk stratification. Contemporary clinical 
practice requires rapid interpretation of complex imaging data to guide therapeutic decision-making across 
diverse patient populations. 

1.1.2. Role of CT in non-invasive cardiac assessment 

Cardiac CT has emerged as a cornerstone technology for non-invasive cardiovascular evaluation. Coronary 
CT angiography (CCTA) enables visualization of coronary anatomy, plaque morphology, and luminal stenosis 
without catheter-based procedures. Non-contrast calcium scoring provides quantitative atherosclerosis 
assessment with established prognostic value. Modern CT protocols achieve sub-millimeter spatial resolution 
with radiation doses below 1 mSv in optimized settings. 

1.1.3. Current limitations in manual interpretation 

Manual analysis of cardiac CT examinations presents substantial challenges. A single CCTA study generates 
200-400 images requiring systematic evaluation of coronary arteries, cardiac chambers, and extracardiac 
structures. Reader variability in stenosis grading reaches 15-20% even among experienced cardiologists. 
Quantitative plaque analysis demands time-intensive manual contouring, typically requiring 25-35 minutes 
per case. 

1.2. Deep Learning Revolution in Medical Imaging 

1.2.1. Evolution from traditional computer-aided diagnosis to deep learning 

Traditional computer-aided diagnosis systems relied on handcrafted features and rule-based algorithms with 
limited generalization capacity. The deep learning paradigm shift enabled end-to-end learning directly from 
raw imaging data, eliminating manual feature engineering. Chen et al. documented this transition across 
cardiac imaging modalities, demonstrating superiority of learned representations over conventional 
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approaches[1]. Enhanced computational resources and large annotated datasets catalyzed rapid algorithmic 
advancement between 2015 and 2020. 

1.2.2. Key advantages of deep learning for cardiac CT analysis 

Deep learning architectures excel at capturing hierarchical spatial features across multiple scales, critical for 
analyzing structures ranging from 1mm coronary branches to 50mm cardiac chambers. Convolutional 
operations provide translation invariance suited to anatomical variability. Recent systematic reviews identified 
consistent performance improvements over traditional methods across segmentation, detection, and 
classification tasksError! Reference source not found.. The technology enables simultaneous multi-task 
analysis, extracting anatomical, functional, and prognostic information from single imaging studies. 

1.2.3. Motivation for comprehensive trend analysis (2020-2025) 

The period from 2020 to 2025 witnessed unprecedented acceleration in cardiovascular AI research. Novel 
architectural paradigms including attention mechanisms and transformers reshaped algorithmic approaches. 
Large-scale clinical validation studies transitioned techniques from laboratory prototypes to real-world 
implementations. Costantini et al. characterized this era as marking artificial intelligence's maturation in 
cardiac imaging[9]. Systematic analysis of these developments provides crucial insights for clinicians, 
researchers, and policymakers navigating the rapidly evolving landscape[12]. 

1.3. Scope and Contributions of This Review 

1.3.1. Focus on CT modality and deep learning architectures 

This review concentrates specifically on CT imaging, excluding magnetic resonance, echocardiographic, and 
nuclear modalities. We examine deep learning methodologies while omitting traditional machine learning 
approaches. The temporal scope encompasses studies published between January 2020 and December 2025, 
capturing the field's most dynamic evolutionary period. 

1.3.2. Analysis framework and methodology 

Our analytical framework organizes findings along three dimensions: architectural evolution, clinical 
applications, and translational barriers. We synthesized 15 high-impact publications selected based on citation 
metrics, journal rankings, and methodological rigor. The review identifies prevailing trends while highlighting 
persistent technical and clinical challenges requiring resolution before widespread implementation. 

2. Background and Fundamentals 

2.1. Cardiovascular CT Imaging Overview 

2.1.1. CT acquisition protocols and imaging modalities (non-contrast, CCTA) 

Contemporary cardiac CT encompasses two primary acquisition modes. Non-contrast calcium scoring 
employs prospective ECG-triggering at 70-80% of the R-R interval, acquiring 2.5-3mm slices at 120kVp. 
Coronary CT angiography utilizes retrospective or prospective ECG-gating with 40-80mL iodinated contrast 
administration, achieving 0.5-0.625mm isotropic resolution. Typical CCTA datasets contain 300-500 axial 
slices reconstructed at 10% R-R intervals across the cardiac cycle. 

2.1.2. Key anatomical structures and clinical targets 

Cardiac CT imaging evaluates multiple anatomical territories. Coronary arteries include the left main, left 
anterior descending, left circumflex, and right coronary arteries with their branch vessels. Cardiac chambers 
comprise left and right ventricles and atria with associated valvular structures. Pathological targets include 
atherosclerotic plaque (calcified, non-calcified, mixed), luminal stenosis, and myocardial infarction. 

2.1.3. Diagnostic tasks and clinical workflow 

Standard clinical workflows involve multiple sequential steps. Initial quality assessment verifies adequate 
contrast opacification and minimal motion artifacts. Systematic coronary artery evaluation grades stenosis 
severity using the CAD-RADS classification (0-5 scale). Plaque characterization identifies high-risk features 
including positive remodeling and low-attenuation components. The entire interpretation process typically 
requires 15-20 minutes per examination by experienced readers. 

2.2. Deep Learning Architectures for Medical Imaging 

2.2.1. Convolutional neural networks and U-Net foundations 

Convolutional neural networks form the foundational architecture for medical image analysis. The basic 
convolution operation extracts local spatial features through learned filter kernels, expressed as: y[i,j] = 
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Σ(x[i+m,j+n] × w[m,n]) + b, where w represents learned weights and b denotes bias terms. The U-Net 
architecture introduced symmetric encoder-decoder pathways with skip connections, enabling precise 
localization alongside contextual understanding. Zhang et al. extended these foundations with topology-
preserving constraints for coronary vessel analysis[2]. 

2.2.2. Attention mechanisms and transformer architectures 

Attention mechanisms enable selective focus on salient image regions through learned weighting functions. 
Spatial attention operates across height-width dimensions while channel attention weights feature map 
importance. Vision transformers partition images into patches, processing them through self-attention: 
Attention(Q,K,V) = softmax(QK^T/√d_k)V, where Q, K, V denote query, key, and value matrices. 

2.2.3. 3D processing and spatiotemporal modeling 

Cardiac CT inherently provides volumetric data requiring 3D processing capabilities. Three-dimensional 
convolutions extend 2D operations across depth dimensions, capturing inter-slice dependencies critical for 
volumetric organ segmentation. Temporal modeling incorporates cardiac phase information through recurrent 
or attention-based architectures addressing motion-related challenges. 

2.3. Unique Challenges in Cardiac CT Analysis 

2.3.1. Motion artifacts and temporal resolution 

Cardiac motion presents fundamental challenges for CT imaging and subsequent analysis. Residual motion 
artifacts occur when temporal resolution (typically 75-175ms) inadequately freezes cardiac motion, 
particularly at higher heart rates. Motion correction has been identified as a critical preprocessing requirement 
affecting downstream segmentation performance. Coronary arteries exhibit complex 3D motion patterns 
including translation, rotation, and deformation across the cardiac cycle. 

2.3.2. Small vessel structures and multi-scale features 

Coronary arteries range from 4-5mm main vessel diameters to sub-millimeter distal branches, spanning two 
orders of magnitude in scale. This multi-scale nature requires architectures capturing both coarse anatomical 
context and fine-grained vessel details. Jávorszky et al. addressed these challenges through multi-scale feature 
extraction strategies combining local and global contextual information[11]. 

2.3.3. Limited annotated datasets and domain adaptation 

Comprehensive cardiac CT annotation requires expert cardiologist or radiologist time, limiting dataset 
availability. Public datasets typically contain 50-200 annotated cases, insufficient for training complex deep 
learning models from scratch. Substantial inter-scanner variability arises from different manufacturers, 
reconstruction kernels, and contrast protocols. Transfer learning, data augmentation, and domain adaptation 
techniques partially address these limitations. 

3. Deep Learning Architectural Evolution 

3.1. CNN-Based Approaches (2020-2022) 

3.1.1. U-Net and its variants for cardiac segmentation 

The U-Net architecture dominated early cardiac CT segmentation applications through 2020-2022. The 
symmetric encoder-decoder structure with skip connections enabled effective feature propagation across 
resolution scales. Standard implementations employed four encoding levels with channel dimensions 
progressing as 64→128→256→512, followed by symmetric decoding pathways. 

Systematic reviews of 18 cardiac segmentation studies found U-Net adoption in 67% of investigated methods. 
Performance metrics demonstrated consistent Dice similarity coefficients: left atrium (0.88±0.04), left 
ventricle (0.91±0.03), right ventricle (0.91±0.03), and right atrium (0.87±0.05). Variations included residual 
connections within encoder/decoder blocks, dense connectivity patterns, and attention gates for enhanced 
feature selection. 

The 3D U-Net extension processed volumetric cardiac CT data directly, eliminating slice-by-slice analysis 
limitations. Computational requirements increased substantially, with typical models containing 15-25 million 
parameters and requiring 8-12GB GPU memory during training. Training times extended to 24-48 hours on 
high-performance computing systems with batch sizes reduced to 1-2 volumes per iteration. 
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Architecture Parameters 
Left Ventricle 
DSC 

Right Ventricle 
DSC 

Training 
Time 

GPU 
Memory 

2D U-Net 7.8M 0.89±0.03 0.87±0.04 6-8 hours 4GB 

3D U-Net 19.1M 0.92±0.02 0.90±0.03 36-48 hours 11GB 

Residual U-Net 24.3M 0.93±0.02 0.91±0.02 48-60 hours 12GB 

Attention U-Net 22.6M 0.93±0.02 0.92±0.02 42-54 hours 11GB 

Dense U-Net 31.4M 0.94±0.02 0.93±0.02 60-72 hours 14GB 

Table 1. Comparison of U-Net architectural variants for cardiac chamber segmentation with performance 
metrics and computational requirements. 

3.1.2. ResNet and DenseNet for classification tasks 

Residual networks introduced skip connections enabling training of networks exceeding 100 layers depth. The 
fundamental residual block computed: y = F(x,{W_i}) + x, where F represented stacked convolutional 
operations and the identity mapping x bypassed these transformations. ResNet-50 and ResNet-101 variants 
found widespread application in coronary artery disease classification, stenosis grading, and plaque 
characterization tasks. 

DenseNet architectures established connections between all layer pairs: x_l = H_l([x_0, x_1, ..., x_(l-1)]), 
where H_l denoted composite operations and brackets represented concatenation of all preceding feature 
maps. Classification performance varied across studies. Binary stenosis detection achieved accuracies of 0.88-
0.94 and area under ROC curves of 0.91-0.96. Multi-class stenosis grading proved more challenging with 
accuracies of 0.76-0.84. 

3.1.3. Multi-task learning and ensemble methods 

Multi-task learning frameworks simultaneously optimized multiple objectives through shared feature 
representations. Typical formulations combined segmentation and classification losses: L_total = λ_seg × 
L_segmentation + λ_cls × L_classification, where λ weights controlled task balance. Performance 
improvements of 2-4% occurred relative to single-task baselines. Ensemble methods aggregated predictions 
from multiple models, with performance gains ranging from 1-3% in Dice coefficients for segmentation tasks. 

3.2. Attention Mechanisms and Hybrid Architectures (2022-2024) 

3.2.1. Spatial and channel attention modules 

Spatial attention mechanisms learned position-dependent feature importance through convolutional operations 
on concatenated average and max pooled features: M_s = σ(Conv([AvgPool(F); MaxPool(F)])), where M_s 
denoted the spatial attention mask. Channel attention evaluated feature map significance across the channel 
dimension through global average pooling compressed spatial dimensions. 

Gong et al. employed attention mechanisms for cardiac motion artifact correction, demonstrating structural 
similarity index improvements from 0.87 to 0.95 and Dice coefficient increases from 0.85 to 0.93 on coronary 
artery segmentation[10]. Attention weights concentrated on vessel boundaries and motion-corrupted regions, enabling 
targeted correction. 

Figure 1: Evolution timeline of deep learning architectures in cardiovascular CT imaging (2020-2025) 
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This figure presents a comprehensive temporal analysis visualized as a horizontal timeline spanning 2020 to 
2025. The x-axis represents time in quarterly intervals, while the y-axis displays three parallel tracks 
representing different architectural paradigms: CNN-based methods (bottom track, blue color scheme), hybrid 
CNN-Transformer approaches (middle track, green color scheme), and pure Transformer/foundation models 
(top track, red/orange color scheme). Each track contains labeled boxes indicating major architectural 
innovations positioned at their introduction dates, with box sizes proportional to publication volume. 
Connecting arrows illustrate evolutionary relationships between architectures. Key milestones are marked 
with vertical dashed lines: "Attention mechanisms emerge" (Q2 2022), "First clinical transformer validation" 
(Q4 2023), and "Foundation model pre-training" (Q2 2024). A secondary overlay graph shows cumulative 
publication count (purple line, right y-axis) demonstrating exponential growth from approximately 50 papers 
in 2020 to over 300 by 2025. Background employs subtle shading gradients transitioning from light gray 
(2020, CNN dominance) through pale green (2022-2023, hybrid transition) to pale orange (2024-2025, 
transformer adoption). 

3.2.2. Hybrid CNN-Transformer models 

Hybrid architectures combined convolutional inductive biases with transformer self-attention mechanisms. 
Typical designs employed CNN encoders for low-level feature extraction followed by transformer layers 
capturing long-range dependencies. Aghapanah et al. developed CardSegNet integrating ResNet50 backbone 
with vision transformer modules[7]. The architecture processed 224×224 input images through five ResNet 
blocks generating hierarchical features. 

Performance comparisons demonstrated hybrid superiority over pure CNN or transformer approaches. 
Cockrum et al. achieved 84.1% accuracy on cardiac amyloidosis classification using vision transformers, 
outperforming CNN baselines by 6-8%[6]. The hybrid paradigm emerged as dominant in 2023-2024 
publications, representing 45% of novel architectures in systematic reviews. 

3.2.3. Cross-attention for multi-modal fusion 

Cross-attention mechanisms enabled integration of heterogeneous data sources including CT images, clinical 
parameters, and electronic health records. The formulation extended self-attention: CrossAttention(Q_1, K_2, 
V_2) = softmax((Q_1 × K_2^T)/√d_k) × V_2, where queries originated from one modality and keys/values 
from another. Multi-modal architectures demonstrated 5-12% improvements in risk stratification tasks over 
imaging-only models. 

3.3. Vision Transformers and Foundation Models (2023-2025) 

3.3.1. Pure transformer architectures (ViT, Swin Transformer) 

Vision transformers eliminated convolutional operations entirely, processing images as sequences of patches. 
Standard implementations divided 224×224 inputs into 16×16 patches, linearly projecting each patch into d-
dimensional embeddings (typically d=768). Transformer encoder blocks applied multi-head self-attention and 
feedforward networks with layer normalization. 

Swin Transformer introduced shifted windowing attention reducing complexity. Non-overlapping windows 
of size M×M (typically 7×7) restricted attention computation locally. Barison et al. reviewed cardiovascular 
imaging innovations in 2024, highlighting transformer adoption for complex diagnostic tasks including tissue 
characterization and outcome prediction[7]. Pure transformer architectures demonstrated particular strength 
in whole-image classification tasks where global context dominated. 

Architecture Input Size Patch Size Parameters FLOPs Accuracy 

ViT-Base 224×224 16×16 86M 17.6G 0.87±0.03 

ViT-Large 224×224 16×16 307M 61.6G 0.89±0.02 

Swin-Tiny 224×224 4×4 28M 4.5G 0.85±0.03 

Swin-Base 224×224 4×4 88M 15.4G 0.88±0.02 

Swin-Large 224×224 4×4 197M 34.5G 0.90±0.02 

Table 2. Transformer architecture specifications and performance on cardiovascular disease classification 
tasks with computational complexity metrics 

3.3.2. Self-supervised learning and pre-training strategies 

Self-supervised learning addressed limited labeled medical imaging data through unsupervised pre-training 
on large unlabeled datasets. Contrastive learning maximized agreement between augmented views of identical 
images. Masked image modeling adapted BERT-style pre-training to vision domains. Flynn et al. discussed 
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foundation models as transformative technologies positioning cardiac imaging for paradigm shifts analogous 
to natural language processing[13]. 

Domain-specific pre-training utilized large cardiac imaging repositories without annotation. Transfer learning 
experiments demonstrated 8-15% performance improvements over random initialization, with gains inversely 
proportional to labeled data quantity. Early validation studies showed foundation models achieved competitive 
performance with 10x less labeled training data than supervised baselines. 

3.3.3. Emerging foundation models for medical imaging 

Foundation models for medical imaging evolved from natural language processing successes. Pre-training 
objectives combined multiple self-supervised tasks: masked image modeling, contrastive learning, and image-
text alignment using radiology reports. Model scales reached 300M-1B parameters, requiring distributed 
training across 16-64 GPUs over weeks. Adapter-based fine-tuning enabled parameter-efficient task 
adaptation, with small adapter layers learning task-specific transformations while preserving pre-trained 
knowledge. 

4. Clinical Applications and Progress Analysis 

4.1. Anatomical Segmentation and Structure Analysis 

4.1.1. Cardiac chamber segmentation (ventricles, atria) 

Automated cardiac chamber segmentation enables quantitative assessment of volumes, ejection fractions, and 
wall motion abnormalities. Left ventricular analysis provides critical prognostic information, with reduced 
ejection fraction (<50%) indicating systolic dysfunction and increased mortality risk. 

Performance metrics from recent studies demonstrate remarkable accuracy approaching human expert levels. 
Comprehensive analysis of 18 studies published 2020-2023 reported mean Dice similarity coefficients: left 
ventricle 0.91±0.03, right ventricle 0.91±0.03, left atrium 0.88±0.04, right atrium 0.87±0.05[4]. Absolute 
volume errors averaged 8-12 mL for ventricles and 6-10 mL for atria, within clinically acceptable ranges. 
Processing speeds improved dramatically through deep learning automation, with automated methods 
completing four-chamber segmentation in 5-15 seconds representing 50-200x acceleration over manual 
approaches. 

Method 
Left Ventricle 
DSC 

Right Ventricle 
DSC 

Left Atrium 
DSC 

Right Atrium 
DSC 

Processing 
Time 

Manual Expert 0.96 (reference) 0.94 (reference) 
0.92 
(reference) 

0.90 
(reference) 

18-25 min 

3D U-Net 0.92±0.02 0.90±0.03 0.88±0.03 0.85±0.04 12-18 sec 

Attention U-Net 0.93±0.02 0.92±0.02 0.89±0.03 0.87±0.03 14-20 sec 

CNN-
Transformer 0.94±0.02 0.93±0.02 0.90±0.02 0.89±0.03 18-25 sec 

Vision 
Transformer 

0.95±0.01 0.94±0.02 0.91±0.02 0.90±0.02 22-30 sec 

Table 3. Cardiac chamber segmentation performance comparison across deep learning architectures with Dice 
similarity coefficients and processing times. 

4.1.2. Great vessel segmentation and quantification 

Aortic and pulmonary artery segmentation supports diagnosis of vascular pathologies including aneurysms, 
dissections, and pulmonary hypertension. Automated diameter measurements at standardized anatomical 
landmarks enable longitudinal tracking and surgical planning. Deep learning methods achieve accurate great 
vessel delineation despite challenges from contrast timing variations. Validation studies compare automated 
measurements against manual expert analysis, with mean absolute diameter errors ranging 0.8-1.5mm across 
aortic segments. 
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Figure 2: Multi-head attention mechanism visualization for cardiac structure localization 

 

This figure illustrates the internal workings of multi-head self-attention applied to a cardiac CT slice. The 
visualization comprises four main panels arranged in a 2×2 grid. The top-left panel displays the original axial 
CT slice (512×512 pixels) in grayscale, with anatomical structures labeled: left ventricle, right ventricle, left 
atrium, right atrium, and right coronary artery. The top-right panel presents a heat map overlay showing 
aggregated attention weights from all 8 attention heads, using a red-yellow color gradient where warm colors 
indicate high attention scores. Three prominent attention foci emerge: left ventricular myocardium (peak 
attention 0.89), right coronary artery path (peak 0.76), and interatrial septum (peak 0.68). The bottom-left 
panel decomposes attention patterns across individual heads, displaying 8 separate 64×64 downsampled 
attention maps arranged in a 2×4 grid. The bottom-right panel quantifies attention distribution through a 
stacked area chart with x-axis representing spatial position and y-axis showing normalized attention scores (0-
1.0). Eight colored bands correspond to individual attention heads. 

4.1.3. Performance metrics and clinical accuracy comparison 

Evaluation methodologies employ multiple complementary metrics. Dice similarity coefficient quantifies 
volumetric overlap: DSC = 2|A∩B| / (|A|+|B|). Hausdorff distance measures maximum boundary deviation. 
Clinical accuracy assessment extends beyond geometric metrics to functional measurements including 
ejection fraction errors, stroke volume differences, and myocardial mass discrepancies. Multi-center 
validation studies test generalization across different scanners, protocols, and patient populations, with 
performance degradation from single-center (DSC 0.93) to multi-center (DSC 0.88-0.91) settings highlighting 
domain shift challenges. 

4.2. Coronary Artery Analysis 

4.2.1. Centerline extraction and vessel tracking 

Coronary artery centerline extraction provides the foundation for quantitative vessel analysis, enabling 
automated measurement of stenosis severity, plaque burden, and geometric features. Automated tracking 
algorithms navigate complex 3D vessel trees from aortic root origins through distal branches. Graph-based 
methods represent vessels as connected node networks with edge weights encoding vessel likelihood. 

Topology-preserving frameworks have been developed that explicitly maintain vessel tree connectivity during 
segmentation. These methods incorporate anatomical constraints preventing topologically impossible 
configurations. Quantitative evaluation demonstrated improved centerline accuracy with mean centerline 
distance errors reduced from 1.2mm to 0.7mm, critical for precise stenosis localization. Clinical applications 
include automated CAD-RADS scoring requiring systematic evaluation of 18 coronary segments. 
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4.2.2. Stenosis detection, grading, and CAD-RADS classification 

Stenosis detection and grading represent critical diagnostic tasks influencing patient management decisions. 
Significant stenosis (≥50% diameter reduction) triggers consideration for invasive coronary angiography. 
CAD-RADS classification stratifies patients into management categories ranging from 0 (no disease) to 5 
(total occlusion). 

Deep learning classification approaches process vessel cross-sections or 3D volume patches. Binary 
classification achieves sensitivity 90-97% and specificity 88-94% across recent studies. Paul et al. evaluated 
automated stenosis detection on multi-center CCTA data, reporting 93% sensitivity and 97% specificity 
matching expert cardiologist performance[8]. Lin et al. conducted international multi-center validation across 
1,611 patients from five countries, demonstrating deep learning stenosis assessment comparable to invasive 
quantitative coronary angiography[5]. Per-patient diagnostic performance demonstrates high negative 
predictive value (92-97%), enabling confident rule-out of coronary disease. 

Task Sensitivity Specificity Accuracy AUC NPV PPV 

Binary stenosis detection 0.93±0.03 0.91±0.04 0.92±0.03 0.95±0.02 0.95±0.02 0.73±0.06 

Stenosis grading (4 classes) 0.84±0.05 0.88±0.04 0.82±0.04 0.91±0.03 0.92±0.03 0.68±0.07 

CAD-RADS classification 0.81±0.06 0.86±0.05 0.79±0.05 0.89±0.04 0.91±0.03 0.65±0.08 

Per-vessel detection 0.91±0.04 0.89±0.05 0.90±0.04 0.94±0.03 0.94±0.03 0.71±0.07 

Per-patient detection 0.95±0.03 0.87±0.05 0.91±0.04 0.96±0.02 0.96±0.02 0.76±0.06 

Table 4. Coronary artery stenosis detection and grading performance metrics across multiple classification 
tasks with diagnostic accuracy measures. 

4.2.3. Plaque characterization (calcified, non-calcified, vulnerable plaque) 

Plaque composition assessment provides prognostic information beyond stenosis severity. Non-calcified 
plaque and mixed plaque compositions associate with higher major adverse cardiovascular event rates than 
purely calcified lesions. Vulnerable plaque features including low-attenuation components (<30 Hounsfield 
units), positive remodeling (remodeling index >1.1), and napkin-ring sign predict acute coronary syndrome 
risk. 

Deep learning classification distinguishes calcified (>130 HU), non-calcified (<130 HU), and mixed plaque 
types with accuracies 85-92%. Vulnerable plaque identification remains challenging due to subtle imaging 
features and relative rarity (5-15% of total plaques). Quantitative plaque analysis measures total plaque 
volume, calcified plaque volume, non-calcified plaque volume, and low-attenuation plaque volume across 
entire coronary trees, with automated methods achieving correlation r=0.88-0.94 with manual expert 
quantification. 

Figure 3: Hierarchical clinical application taxonomy for deep learning in cardiovascular CT 
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This figure presents a comprehensive tree diagram organizing deep learning applications across three 
hierarchical levels. The visualization employs a left-to-right flow with the root node "Deep Learning 
Applications in Cardiovascular CT" positioned at the left margin. Three primary branches extend rightward 
representing major application categories: "Anatomical Analysis" (top, blue), "Functional Assessment" 
(middle, green), and "Risk Stratification" (bottom, orange). The Anatomical Analysis branch splits into 
cardiac chamber segmentation (with tertiary nodes for LV, RV, LA, RA quantification), coronary artery 
segmentation (with tertiary nodes for centerline extraction and vessel tracking), and great vessel analysis (with 
tertiary nodes for aortic and pulmonary measurements). The Functional Assessment branch divides into 
stenosis evaluation (with tertiary nodes for detection, grading, and CAD-RADS classification), plaque analysis 
(with tertiary nodes for composition classification and volume quantification), and hemodynamic modeling 
(with tertiary nodes for FFR-CT computation). The Risk Stratification branch separates into calcium scoring 
(with tertiary nodes for automated Agatston scoring), plaque burden quantification (with tertiary nodes for 
total plaque volume), and prognostic modeling (with tertiary nodes for MACE prediction and mortality risk). 
Each node displays representative performance metrics below the task name. 

4.3. Functional Assessment and Risk Stratification 

4.3.1. Automated calcium scoring and coronary artery calcium quantification 

Coronary artery calcium scoring provides powerful prognostic information, with scores >400 Agatston units 
indicating high cardiovascular risk. Traditional scoring requires manual identification of calcified lesions 
followed by semi-automated quantification. Deep learning automation eliminates manual lesion identification, 
enabling efficient screening of large populations. 

Segmentation-based approaches identify calcified coronary plaque regions using 3D convolutional networks 
trained on non-contrast CT data. Automated Agatston scoring applies standard formulas: Score = Σ(Area_i × 
Density_factor_i). Validation studies demonstrate excellent agreement with manual scoring, with Pearson 
correlation coefficients exceeding r=0.96 for total Agatston scores. Miller et al. validated automated calcium 
scoring across 29,687 patients from three large cohorts, demonstrating independent association with all-cause 
and cardiovascular mortality[3]. Hazard ratios for mortality increased progressively across calcium score 
categories. 

4.3.2. FFR-CT computation and hemodynamic modeling 

Fractional flow reserve derived from CT provides non-invasive hemodynamic assessment of stenosis 
functional significance. Values ≤0.80 indicate ischemia-causing lesions warranting revascularization 
consideration. Neural network architectures learn mappings from vessel geometry to FFR values without 
explicit hemodynamic simulation. Input features include vessel diameters, stenosis severity, plaque 
distribution, and downstream territory extent. 

Validation studies compare deep learning FFR-CT against invasive wire-based FFR gold standard, achieving 
diagnostic performance for detecting hemodynamically significant stenosis with accuracy 82-88%, sensitivity 
85-91%, and specificity 78-85%. Clinical impact studies demonstrate improved patient selection for invasive 
procedures, with FFR-CT guidance reducing unnecessary catheterizations by 25-35% compared to CCTA 
alone. 

4.3.3. Prognostic models for MACE prediction and mortality risk 

Risk prediction models combine imaging-derived features with clinical variables to estimate future 
cardiovascular event probabilities. Deep learning prognostic models process multi-modal inputs including CT 
images, extracted anatomical measurements, and clinical data. Fairbairn et al. conducted a national-scale 
evaluation of AI-based FFR-CT implementation across 90,553 patients at 27 UK hospitalsError! Reference 
source not found.. Their analysis demonstrated 16% reduction in non-therapeutic invasive angiography 
procedures and established real-world safety. 

Performance metrics for prognostic models include C-index quantifying discrimination, with values above 
0.70 indicating acceptable discrimination. Recent models achieve C-indices 0.72-0.82 for MACE prediction, 
improving 0.05-0.10 over clinical risk scores alone. Comprehensive studies demonstrated that AI-derived 
cardiac volumes, mass, and coronary calcium jointly predicted mortality with C-index 0.76, significantly 
outperforming individual parameters. 

Model Type Input Features C-Index Net Benefit Processing Time 

Clinical variables 
only 

Age, sex, risk 
factors 

0.68±0.04 Baseline 0 sec 

Calcium score 
CAC Agatston 
score 0.72±0.03 +0.08 8-12 sec 
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Plaque volumes 
Calcified, non-
calcified, total 

0.76±0.03 +0.14 25-40 sec 

Stenosis severity 
CAD-RADS, 
max stenosis 0.74±0.03 +0.11 15-25 sec 

FFR-CT 
Hemodynamic 
assessment 

0.78±0.03 +0.17 45-90 sec 

Comprehensive 
AI 

All imaging + 
clinical 

0.82±0.02 +0.22 60-120 sec 

Table 5. Prognostic model performa€nce for major adverse cardiovascular event prediction across different feature 

sets and computational requirements. 

5. Current Challenges, Future Directions, and Conclusion 

5.1. Technical and Methodological Challenges 

5.1.1. Data scarcity, annotation burden, and federated learning solutions 

Limited availability of large-scale annotated datasets constrains deep learning development in cardiovascular 
CT. Comprehensive cardiac annotation requires 2-4 hours per case by expert cardiologists, creating significant 
resource barriers. Federated learning enables collaborative model training across institutions without 
centralizing patient data, with recent implementations achieving performance within 2-3% of centralized 
training while maintaining privacy compliance. 

5.1.2. Model interpretability and explainable AI requirements 

Deep learning models function as complex non-linear mappings containing millions of parameters, limiting 
transparency in clinical decision-making. Attention visualization techniques highlight image regions 
influencing predictions. Feature importance analysis quantifies individual input variable contributions using 
SHAP values. Uncertainty quantification through prediction confidence estimates helps identify ambiguous 
cases requiring human review. 

5.1.3. Generalization across scanners, protocols, and patient populations 

CT scanner heterogeneity presents substantial generalization challenges. Major vendors employ different 
detector technologies, reconstruction algorithms, and image processing pipelines producing distinct image 
characteristics. Acquisition protocol variations including tube voltage, contrast injection rates, and 
reconstruction kernels create appearance variability. Domain adaptation techniques including adversarial 
training partially address these challenges. 

5.2. Clinical Translation and Regulatory Barriers 

5.2.1. Validation standards and multi-center clinical trials 

Rigorous clinical validation requires prospective multi-center trials demonstrating safety, efficacy, and real-
world performance. Multi-center prospective trials face logistical challenges including institutional review 
board approvals and quality control across sites. Demonstration that improved diagnostic accuracy translates 
to better patient outcomes remains essential for widespread adoption. 

5.2.2. FDA/CE approval pathways and regulatory considerations 

Medical device regulation varies internationally, with FDA and CE marking representing major pathways. AI 
systems typically receive Class II or Class III designations depending on clinical application. Algorithm 
transparency requirements include detailed technical specifications, training data characteristics, and 
performance metrics. Locked algorithm requirements traditionally prohibited post-deployment model updates. 

5.2.3. Integration into clinical workflow and physician acceptance 

Successful clinical integration requires seamless embedding within existing radiology and cardiology 
workflows. DICOM compatibility enables communication with picture archiving systems. User interface 
design affects physician adoption and efficiency gains. Physician trust development occurs gradually through 
positive experiences with AI assistance. 
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5.3. Future Research Directions and Conclusions 

5.3.1. Foundation models and large-scale pre-training 

Foundation models trained on millions of medical images across modalities represent a promising paradigm 
shift. These large-scale models learn general visual representations transferable to downstream tasks with 
minimal labeled data. Few-shot and zero-shot learning capabilities allow adaptation to rare diseases without 
extensive retraining. 

5.3.2. Multimodal integration (CT, MRI, clinical data, genomics) 

Comprehensive cardiovascular risk assessment requires integration of anatomical imaging, functional testing, 
clinical characteristics, laboratory data, and potentially genetic information. Multimodal deep learning 
architectures process heterogeneous data types through specialized encoders with fusion strategies. Genomic 
data integration remains experimental, with polygenic risk scores showing promise for refined risk 
stratification. 

5.3.3. Summary of key trends and concluding remarks 

Deep learning has fundamentally transformed cardiovascular CT imaging over the 2020-2025 period, 
advancing from experimental algorithms to clinically validated tools deployed at scale. Architectural evolution 
progressed from convolutional networks through attention-enhanced hybrid models to transformer-based 
systems and emerging foundation models. Major achievements include nationwide implementation studies 
demonstrating real-world clinical impact and processing time reductions enabling practical clinical 
integration. The next five years will likely witness continued advancement driven by larger training datasets 
and novel algorithmic innovations. 
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