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Abstract

E-commerce return volumes continue to surge, presenting significant operational challenges for reverse logistics
management. Traditional route optimization approaches struggle with the dynamic nature of return collection
requests characterized by unpredictable arrivals, stringent time windows, and dispersed locations. This paper
proposes a deep reinforcement learning framework combining graph attention networks with proximal policy
optimization for dynamic return routing. The approach encodes spatial relationships between pickup locations and
learns adaptive policies through continuous environmental interaction. Experimental evaluation on synthetic
benchmarks and real-world data demonstrates substantial improvements: 15.8% reduction in routing distance and
11.4 percentage point improvement in on-time pickup rates compared to genetic algorithm baselines. Computational
analysis shows 0.28-second inference times enabling real-time adaptation. Results validate practical viability for
intelligent reverse logistics optimization.

Keywords: Deep Reinforcement Learning, Reverse Logistics, Route Optimization, Return Management, Graph
Neural Networks

1. Introduction
1.1. Research Background and Motivation

E-commerce expansion has transformed retail operations globally, with online sales reaching unprecedented
levels. This growth brings corresponding surges in product returns, with fashion and electronics experiencing
20-30% return rates[ 1]. The economic magnitude reached $890 billion in 2024, imposing substantial costs on
retailers and logistics providers. Each return incurs $15-30 processing costs encompassing transportation,
inspection, refurbishment, and restocking.

Traditional logistics optimization methods designed for forward distribution with predictable demand patterns
face fundamental challenges in return collection. Customer locations are geographically dispersed, requests
arrive dynamically throughout operational periods, and time windows reflect customer availability rather than
operational efficiency. Static routing plans become obsolete as new requests emerge and conditions change,
creating urgent need for intelligent adaptive solutions.

Recent artificial intelligence advances, particularly deep reinforcement learning, offer promising pathways.
Deep reinforcement learning agents process high-dimensional state representations, optimize long-term
cumulative objectives, and adapt through continuous policy refinement. Successful applications in warehouse
robotics, autonomous vehicles, and ride-sharing demonstrate potential for complex logistics problems.

1.2. Research Objectives and Scope

This research addresses dynamic vehicle routing for e-commerce return collection, minimizing operational
costs while satisfying service constraints. The environment consists of a single distribution center serving an
urban area with homogeneous vehicle fleet collecting returns from customer locations. Each request specifies
geographical location, preferred time window, and service duration. Vehicles have limited capacity and shift
duration constraints.

The primary question examines whether deep reinforcement learning agents can learn effective routing
policies outperforming conventional optimization heuristics in dynamic scenarios. Three sub-questions guide
ivestigation: How should state information be represented and rewards designed for return routing? Which
neural architectures and algorithms perform best? What performance improvements can be achieved under
realistic conditions?

The scope focuses on single-depot operations with deterministic travel times and known time windows. Multi-
depot coordination, stochastic traffic, and customer availability prediction are acknowledged as extensions
but excluded. These assumptions align with industry practices while maintaining sufficient complexity.
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1.3. Main Contributions

This research advances reverse logistics optimization and reinforcement learning applications through four
contributions. The methodological contribution presents a novel framework combining graph attention
networks with proximal policy optimization. Graph attention processes spatial relationships between
locations, learning to focus on nearby, urgent, capacity-appropriate customers. The reward function balances
route efficiency, time window compliance, capacity utilization, and service quality.

Empirical contributions provide comprehensive validation on synthetic benchmarks and real-world
operational data. Performance comparisons against genetic algorithms, commercial solvers, and classical
heuristics establish superiority across metrics. Ablation studies systematically validate design choices for
neural components and reward elements.

Practical contributions offer deployment insights from three-month pilot implementation. Analysis addresses
data quality requirements, human oversight mechanisms, driver training, and system integration.
Computational efficiency, scalability characteristics, and robustness to disruptions address real-world
adoption concerns.

2. Related Work and Theoretical Foundation

2.1. Reverse Logistics and Return Management

Reverse logistics encompasses activities moving products from final destinations back through supply chains
for value recovery or disposal. Return management focuses on processing customer returns in e-commerce
contexts[2]. The 1Plleld evolved from viewing returns as waste problems to recognizing strategic value recovery
opportunities through refurbishment and recycling.

Operational challenges differ fundamentally from forward logistics. Demand forecasting deteriorates
significantly, with return prediction errors reaching 50-70% versus 20-30% for forward flows[3]. Quality
inspection adds complexity as returned items have varying conditions affecting disposition decisions.
Coordinating across retailers, logistics providers, refurbishment centers, and recyc%ing acilities introduces
additional challenges.

Return routing strategies vary across organizations. Scheduled routes with fixed pickup points require
customer delivery to designated locations. On-demand collection provides convenience but introduces
complexity from dynamic arrivals. Research on route optimization primarily addressed static problems with
known demand|[3]. The gap between academic assumptions and industry practice regarding dynamic real-time
routing motivates investigation.

Performance metrics include cost per return, vehicle utilization, on-time pickup percentage, average wait time,
and carbon emissions. Industry benchmarks indicate leading retailers achieve 85-92% on-time performance
at $18-25 per return costs, establishing experimental evaluation targets.

2.2. Vehicle Routing Problems and Optimization Methods

Vehicle routing problem variants form theoretical foundations for return collection optimization. Capacitated
VRP introduces vehicle load limits. VRP with time windows requires service within specified intervals.
Dynamic VRP addresses requests arriving during execution. Pickup and delivery problems involve paired
locations[4]. Return routing combines multiple variant aspects: capacity constraints, tight time windows,
dynamic requests, and pickup-focused operations.

Traditional algorithms include exact methods, construction heuristics, and metaheuristics. Branch-and-bound
and dynamic programming provide optimal solutions but scale poorly beyond 50 nodes. Construction
heuristics execute quickly but produce low-quality solutions. Metaheuristics including genetic algorithms,
simulated annealing, and tabu search balance quality and efficiency[5]. Genetic algorithms achieve 5-8%
optimality gaps on static benchmarks but require re-optimization for dynamic scenarios, introducing
computational delays hindering real-time adaptation.

2.3. Reinforcement Learning and Deep RL Architectures

Reinforcement learning provides frameworks for learning optimal policies through environmental interaction.
Markov decision process formalization defines states, actions, transitions, rewards, and discounts. Value
functions estimate expected cumulative rewards. Bellman equations establish recursive relationships[6]. Core
algorithms include Q-learning, policy gradients, and actor-critic architectures.

Deep reinforcement learning uses neural networks for value and policy approximation, handling high-
dimensional states and complex functions. Applications to combinatorial optimization include attention-based
sequence models for traveling salesman problems, pointer networks for vehicle routing, and graph neural
networks for structured problems[7]. Deep Q-networks enable neural function approximation with stability.
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Proximal policy optimization ensures stable training through clipped objectives preventing excessive policy
changes. Soft actor-critic achieves efficient off-policy learning.

Performance analyses show deep reinforcement learning achieves near-optimal solutions within 2-5% gaps
on benchmarks while generalizing across instances. Applications include warehouse robots, autonomous
fleets, inventory optimization, and production scheduling. Major companies deployed reinforcement learning
for warehouse operations and inventory allocation. Deep reinforcement learning excels in dynamic, high-
frequency environments where continuous learning provides advantages.

2.4. Research Gaps and Positioning

Three critical gaps motivate research. Most vehicle routing assumes static or known demand, yet return
collection faces real-time dynamic requests arriving unpredictably. Few studies apply deep reinforcement
learning specifically to reverse logistics despite distinct characteristics including quality uncertainty and
disposition complexity. Limited validation on real-world data with realistic constraints reduces practical
applicability.

This research addresses gaps by applying state-of-the-art techniques tailored to return routing. The approach
combines graph attention networks with proximal policy optimization, explicitly modeling dynamic arrivals,
time windows, and capacity constraints. Validation on synthetic benchmarks and real industry data provides
comprehensive assessment. Detailed design choice analysis offers guidance for future applications.

3. Problem Formulation and Algorithm Design
3.1. Dynamic Return Routing Problem Definition

The dynamic return routing problem is defined over planning horizon T with distribution center at coordinates
(x 0,y 0) and fleet of m identical vehicles with capacity Q and maximum shift duration D_max. Return
requests arrive dynamically, with request i characterized by location (x i,y i), time window [e 1,1 i], service
duration s_1i, and items n_1i. The road network has distance matrix d_1j and travel time matrix t_ij[8].

Decision variables specify vehicle route R_k as ordered customer sequence, reguest assignments to vehicles,
and departure times. The objective minimizes total cost C total = alpha sum(d k) + beta sum(T k), where
d_k is distance traveled by vehicle k, T k is total time, alpha is cost per kilometer, and beta is cost per hour.

Hard constraints ensure feasibility. Capacity constraints require sum(n_i for i in R_k) <= Q. Time windows
mandate e_i <= arrival i <= 1_i. Route duration enforces sum(times) <= D_max. Coverage ensures each
request assigns to one route. Soft constraints minimize earliness/lateness deviations and customer wait times.

Reformulation as Markov decision process for reinforcement learning defines state space S_t including current
time, vehicle positions and capacities, unassigned requests with time windows, and summary statistics. Action
space A t contains routing decisions: select next customer or return to depot. Transition function T(s t, a t,
s_{t+1}) describes state evolution. Reward function R(s t, a_t) provides feedback through negative distance
costs, constraint violation penalties, and pickup bonuses. The objective learns policy pi(als) maximizing
expected cumulative discounted reward E[sum(gamma”t R _t)] where gamma = 0.99.

Table 1: Problem Notation and Parameters

Symbol Description Typical Value
m Number of vehicles 3-5

Q Vehicle capacity (items) 30-50

D_max Maximum shift duration (hours)  8-10

n i Items in request 1 1-5

[e 1,1 i] Time window (hours) 2-4 hour span
s i Service duration (minutes) 5-15

alpha Distance cost ($/km) 0.8-1.2

beta Time cost ($/hour) 15-25

gamma Discount factor 0.99
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3.2. Deep Reinforcement Learning Approach

The architecture processes states through three neural network components. The encoder uses graph attention
mechanisms capturing spatial relationships between locations. Customers and depot are graph nodes with
distance-weighted edges. Graph attention learns coefficients a ij indicating customer j's importance for
decisions about customer i[9].

Attention computes a ij = exp(LeakyReLU(W"T[h_i||h j])) / sum_ k(exp(LeakyReLU(W"T[h _ilh_k]))),

whereh_iandh_jare node features, w is learnable weight, and || denotes concatenation. Multiple heads capture
different spatial aspects. Graph attention aggregates information through h i' = sigma(sum_j(a ij W h_j)),

fvherg V\E 11% ]leamable matrix and sigma is nonlinear activation. Stacking 3-4 layers enables hierarchical pattern
earning[10].

State features for requests include normalized location coordinates (X 1 - X min)/(x_ max - X_min), time
urgency (current_time - e i)/(1_i - e_i), remaining window width (1_i - current_time)/D_max, and capacity
requirement n_i/Q. Vehicle features include position, remaining capacity percentage, and elapsed shift time.
Global features capture unserved request count, average customer distance, and expected next request time.

The policy network (actor) is a multi-layer perceptron with two 512-unit hidden layers using ReLU activations.
It maps encoded states to action probabilities over valid customers. Masked softmax ensures only feasible
actions have non-zero probability: pi(als) = exp(logit a) mask a/sum j(exp(logit j) mask j). Feasibility
checks verify capacity and time window reachability.

The value network (critic) shares the encoder but uses separate MLP estimating state values V(s). Architecture
parallels the policy network with two 512-unit layers. State values enable advantage computation for policy
gradients: A(s,a) = Q(s,a) - V(s), using generalized advantage estimation with lambda = 0.95.

Table 2: Neural Network Architecture Specifications

Component Architecture Details Parameters
Graph Attention Encoder 4 GAT layers, 128 dims, 8 heads 412,000
Policy Network (Actor) ggg&t:ﬁg;(_gﬁggﬁérsﬁ 12,5121, 534,000
Value Network (Critic) Iongtlgl:mzl%’ Hidden: [512,512], 267,000
Total trainable parameters Full architecture 1,213,000
Input state dimension %gi&?g;er * vehicle + global 180-220
Attention heads per layer Multi-head mechanism 8

Proximal policy optimization training collects experience through environmental interaction using current
policy. Each iteration gathers 2048 steps across parallel environments. Advantages compute using generalized
advantage estimation: A t =sum_{l=0}"{inf}(gamma lambda)"l delta {t+l}, where delta t=r t+ gamma
V(s_{t+1}) - V(s_t). Policy updates maximize clipped objective L CLIP(theta) = E_t[min(r_t(theta) A t,
clip(lr_t(thgtg%, 1]-epsilon, I+epsilon) A t)], where r_t(theta) = pi theta(a t|s t) / pi_theta old(a t|s t) and
epsilon =0.2[11].

Value network trains minimizing mean squared error: L _V(theta) = E t[(V_theta(s_t) - R t)"2], where R t=
sum_{I=0}"{inf}gamma™l r {t+1}. Mini-batch gradient descent uses 10 epochs per collection phase. Adam
optimizer applies updates with learning rate 3e-4 annealing to le-5. Entropy bonus with coefficient 0.01
encourages exploration: L _entropy = -E _t[sum_a pi(als_t) log(pi(als_t))]. Total loss combines components:
L total=L CLIP-0.5 L V+0.01 L entropy.

Training spans 7-10 million environment steps, equivalent to solving 70,000-100,000 instances. On NVIDIA
V100 GPU, this requires approximately 72 hours. Large-scale training enables diverse scenario encounters
and robust strategy learning.

3.3. Reward Function Design
The reward function translates operational objectives into learning signals guiding policy optimization.

Multiple components address routing aspects. Distance cost applies negative reward r distance = -1.0
delta_distance per kilometer, directly penalizing route length and aligning with operational cost minimization.
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Time window penalties enforce service constraints. Late arrivals incur steep penalties: r_late = -50.0 max(0,
arrival time - window end), creating strong on-time incentives. Early arrivals receive smaller penalties:
r_early =-5.0 max(0, window_start - arrival time), encouraging punctuality without excessive earliness. The
10:1 ratio reflects customer service priorities.

Pickup rewards provide positive reinforcement: r_pickup = 10.0 per successful completion. This signal helps
agents learn pickup value, counterbalancing negative distance costs and encouraging request acceptance
despite route length increases.

Capacity utilization rewards efficient loading: r_capacity = 5.0 (items_collected / vehicle_capacity). Higher
rewards for fuller vehicles incentivize coordinated pickups using available capacity effectively, reducing total
vehicle requirements.

Wait time penalties address service quality: r wait = -0.5 wait_time_minutes, where wait time measures
submission-to-pickup interval. Minimizing wait times improves customer satisfaction and responsiveness.

Total reward combines components: R_t = r_distance + r_late + r_early + r_pickup + r_capacity + r_wait.
Weights were tuned through extensive validation set experimentation, balancing objectives and producing
stable learning.

Reward shaping accelerates convergence. Potential-based shaping adds Phi(s') - gamma Phi(s) without
changing optimal policy, where Phi(s) = -10.0 unserved requests provides progress signals. Curriculum
learning gradually increases difficulty: initial phases use 20 requests with 4-hour windows, intermediate
phases increase to 50 requests with 2-hour windows, final phases train on 100 requests with 1-hour windows.
Staged approaches provide clearer signals improving policy quality.

Reward normalization divides by running standard deviation stabilizing training across scales. Normalization
factor cpmé)utes using exponential moving average: std t = 0.99 std_{t-1} + 0.01 std(rewards_current).
Normalized rewards r normalized = r / (std_t + le-8) prevent large magnitude variations destabilizing
learning.

Figure 1: Deep Reinforcement Learning Framework Architecture

(A) Environment Interaction

Customer Return Requests Routing Decisions

DRL Agent
Graph Attention
+PPO Policy

(C) PPO Training Process

PPO Clipped Objective

Figure 1 illustrates the comprehensive deep reinforcement learning framework architecture for route
optimization in e-commerce return management, consisting of three key components:

(A) Environment Interaction: This panel depicts the reinforcement learning loop between the environment and
the DRL agent. The left side shows the customer return requests represented as a graph network with nodes
(customer locations) and edges (potential routes), with the central node representing the distribution center.
The DRL agent, employing Graph Attention Network combined with Proximal Policy Optimization (PPO)
with a total of n(¢,0) parameters, processes the state information and generates routing decisions shown on
the right panel. The feedback loop is completed through reward signals based on cost, time window
compliance, and vehicle capacity utilization.

(B) Neural Network Architecture: This panel presents the detailed neural network structure with three distinct
input feature categories: vehicle state (position, capacity) in blue, customer state (location, time windows) in
orange, and global context (time, requests) in green, with a total dimension of 180-220. These features are
processed through a graph attention network consisting of 4 layers with 8 attention heads and 412K
parameters. The architecture bifurcates into two output networks: the Policy Network ([512, 512] — n(9),
parameters: 634K) generating action probabilities, and the Value Network ({512, 512] — V(s), parameters:
667K) estimating state values.
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(C) PPO Training Process: This panel demonstrates the Proximal Policy Optimization training mechanism.
The left graph shows the clipped objective function, illustrating how PPO constrains policy updates by
clipping the probability ratio within a specified range (typically [0.8, 1.2]) to prevent excessively large policy
changes. The right diagram shows the experience collection process across multiple batches over 2048 time
steps, vi/(ith (s, a, r) tuples being collected and subsequently used to compute advantages and update the policy
network.

4. Experimental Evaluation and Results
4.1. Experimental Design and Setup

Evaluation employs three datasets. Synthetic benchmarks contain 500 instances generated using adapted
Solomon VRPTW generator, varying from 20-100 daily requests uniformly distributed in 20km x 20km areas
with 4-hour time windows. Request density (sparse/medium/dense), time window tightness (4-hour/2-hour/1-
hour), and vehicle capacity (20/50 items) vary systematically[12].

Real-world pilot data comprises 90 days of actual return pickups from major e-commerce provider. The
metropolitan area averages 75 daily requests with real customer locations, time preferences, and vehicle
constraints. Preprocessing removed identifying information while preserving operational characteristics[13].

Benchmark comparison uses standard VRP datasets (Solomon, Gehring & Homberger) adapted for pickup-
only scenarios by removing delivery requirements and adjusting service times.

Five baselines provide comparisons: nearest neighbor heuristic greedily selecting closest customers, savings
algorithm constructing routes through iterative merging, genetic algorithm with population 100 evolved over
1000 generations, Google OR-Tools commercial solver with 60-second time limits, and vanilla DQN
alternative deep reinforcement learning without graph encodingError! Reference source not found..

Implementation uses PyTorch 1.12 and Stable-Baselines3 on NVIDIA V100 GPUs with 32GB memory. All
experiments use 30 random seeds ensuring statistical reliability, reporting means and 95% confidence
intervals.

Metrics quantify performance aspects. Solution quality includes total distance, vehicles required, on-time
percentage, and average wait time. Computational efficiency measures training time and inference time per
decision. Robustness assesses variance across instances and adaptability to variations. Statistical significance
uses paired t-tests and Wilcoxon signed-rank tests.

4.2. Main Experimental Results

Synthetic benchmark performance demonstrates substantial advantages. Across 500 instances, DRL achieves
38.2 km mean distance versus 44.6 km for genetic algorithms (14.3% improvement, p < 0.001), 41.2 km for
OR-Tools (7.3% improvement), and 54.8 km for nearest neighbor (30.3% improvement). On-time rates show
consistent superiority: DRL achieves 94.2% versus 87.5% for genetic algorithms, 91.8% for OR-Tools, and
76.4% for nearest neighbor. Vehicle usage averages 3.2 for DRL versus 3.6 for genetic algorithms, 3.4 for
OR-Tools, and 4.1 for nearest neighbor[14].

Difficulty breakdown reveals DRL advantages increase for harder instances. Tight 1-hour windows show
18.7% improvement over genetic algorithms. Medium 2-hour windows show 13.5% improvement, while
loose 4-hour windows yield 9.2% improvement. Size analysis shows 14% improvement for small problems
(20-50 requests) and 16% for large problems (100-200 requests).

Real-world validation confirms applicability. Daily costs decrease from $127 to $108 with DRL (15.0%
savings, $6,935 annual per center). On-time rates improve from 82.3% to 93.6% (11.3 percentage points).
Fuel consumption decreases 16.8% (5.0 to 4.2 L/100km). Vehicle requirements drop from 4.1 to 3.7 average.
Results demonstrate meaningful economic and operational benefits.

Table 3: Performance Comparison on Synthetic Benchmarks

Mean
Method Distance Std Dev On-Time (%) Vehicles Inference (s)
(km)
DRL
(Proposed) 38.2 4.7 94.2 3.2 0.28
Genetic 44.6 5.3 87.5 3.6 38.0
Algorithm : : : : :
OR-Tools 41.2 4.9 91.8 34 52.0

COMPUTING INNOVATIONS AND APPLICATIONS
ISSN: 3068-5516 105



Savings

Algorithm 49.3 6.1 83.2 3.8 0.12
Nearest

Neighbor 54.8 7.2 76.4 4.1 0.05
Vanilla DQN  43.5 5.8 89.1 3.5 0.31

Computational efficiency analysis reveals trade-offs. DRL requires 72 hours offline training, amortized across
deployments. Inference executes in 0.28 seconds per decision enabling real-time replanning. Genetic
algorithm re-optimization requires 38 seconds, OR-Tools demands 52 seconds, both too slow for dynamic
adaptation. Nearest neighbor runs in 0.05 seconds but produces lower quality. Training cost amortizes to only
1.44 hours per center when deployed to 50 centers.

Table 4: Real-World Pilot Study Results (90 days)

Metric Baseline DRL Improvement
Daily Cost ($) 127.00 108.00 15.0%
On-Time (%) 82.3 93.6 +11.3 pp

Fuel (L/100km) 5.0 4.2 16.8%
Vehicles Required 4.1 3.7 9.8%

Wait Time (min) 67 48 28.4%
Annual Savings ($) - 6,935 -

4.3. Ablation Studies and Analysis

Systematic ablations isolate component contributions. Neural architecture comparisons show full graph
attention achieves 38.2 km. Fully-connected MLP yields 45.8 km (10.9% worse, p < 0.001). Recurrent neural
network produces 44.1 km (6.8% worse). Results confirm value of modeling spatial relationships through
graphs. Attention visualizations show networks learn prioritizing nearby customers, urgent requests, and
capacity-appropriate pickups.

Reward component analysis tests objective importance. Removing time window penalty degrades on-time

rate from 94.2% to 71.8%, demonstrating agents require explicit deadline penalties. Eliminating capacity

utilization increases vehicles from 3.2 to 3.9. Removing wait penalties raises average wait from 42 to 68

glinutes. Distance cost removal degrades quality from 38.2 to 47.6 km. Ablations validate multi-objective
esign.

Algorithm comparison evaluates PPO against alternatives. PPO achieves 38.2 km, A3C produces 39.7 km,
DQN yields 43.5 km, REINFORCE achieves 41.8 km. PPO's clipped objective and advantage estimation
provide superior stability and performance. Convergence curves show PPO stabilizes within 3 million steps
while DQN requires 5+ million with higher variance.

Figure 2: Training Convergence and Algorithm Comparison
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PPO converges faster (3M steps) with lower final distance (38.2 km vs 44.6 km baseline)

Figure 2 presents the training dynamics and comparative performance analysis of different reinforcement
learning algorithms:
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Training Convergence (Left Panel): The learning curves demonstrate the episode reward progression across
10 million training steps for four algorithms: PPO (blue solid line), A3C (red dashed line), DQN (orange
dotted line), and REINFORCE ((%reen dash-dot line). PPO exhibits the most rapid convergence, achieving
aﬁproximately -60 episode reward around 3 million steps and maintaining stable performance thereafter. A3C
shows slightly slower convergence to approximately -65, while DQN and REINFORCE converge to around -
75 and -80 respectively. The shaded regions around each curve represent variance across multiple training
runs, with PPO demonstrating notably lower variance, indicating superior training stability.

Final Performance (Right Panel): The box plot comparison shows the final route distance distribution (in km)
for five algorithms after convergence: PPO, A3C, DQN, REINFORCE (REINF), and V-DQN. PPO achieves
the best median performance at approximately 40 km with the tightest interquartile range (IQR),
demonstrating both superior performance and consistency. The genetic algorithm (GA) baseline is marked at
44.6 km with an orange dgshed line. A3C and DQN show median values around 41-42 km, while
REINFORCE and V-DQN exhibit higher median values (42-43 km) and larger variance. Outliers are indicated
as individual dots beyond the whiskers.

Table 5: Sensitivity Analysis - Scalability and Robustness

Problem Size Distance (km) Gap (%) Time (s) Success (%)
20 requests 18.3 3.2 0.14 97.8

50 requests 38.2 4.1 0.28 94.2

100 requests 72.6 4.6 0.51 92.1

150 requests 104.8 4.9 0.68 90.3

200 requests 138.4 4.7 0.89 89.6

Time Window Success (%) Distance (km) Vehicles

4 hours 96.4 37.1 3.1

2 hours 94.2 38.2 3.2

1 hour 87.8 43.5 3.6

Figure 3: Performance Comparison and Sensitivity Analysis

(a) Performance Comparison Across Metrics (b) Performance vs Problem Difficulty
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Figure 3 provides comprehensive performance evaluation across multiple dimensions:

(a) Performance Comparison Across Metrics: This multi-metric bar chart compares six algorithms (DRL, GA,
OR-Tools, Sweep, NN, V-DQN) across four key performance indicators. For route distance, DRL achieves
100% normalized performance, outperforming GA (78%), OR-Tools (75%), and other baselines. On-time rate
shows DRL at 93%, significantly exceeding GA (84%) and other methods (70-75%). Vehicle usage
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demonstrates DRL at 83% efficiency compared to GA (75%) and others (63-75%). Computation time (log
scale) reveals DRL's efficiency advantage with the shortest processing time, followed by NN, while GA and
OR-Tools require substantially longer computation.

(b) Performance vs Problem Difficulty: This heatmap matrix analyzes DRL improvement over GA across

problem scales and time window constraints. The problem size ranges from Small (20-40 customers), Medium

(50-70), to Large (80-100), while time window tightness varies from Loose (4h), Medium (2h), to Tight (1h).

The color intensity represents DRL's percentage improvement over GA (5%-20% range). The analysis reveals

that DRL's advantage intensifies with problem complexity, achieving 9.2% improvement for small-loose

ﬁroblems and escalating to 18.7% for large-tight scenarios, demonstrating superior scalability and constraint-
andling capability.

(c) Dynamic Adaptation Performance Over Time: This temporal analysis shows cumulative on-time pickups
over 8 hours of operational time under dynamic conditions. Three methods are compared: DRL Dynamic
Replanning (blue solid line), GA Hourly Re-optimization (red dashed line), and Static GA without replanning
(orange dotted line). Gray vertical bars indicate disruption events (new requests, traffic changes). DRL
consistently outperforms both GA variants, achieving approximately 80 cumulative on-time pickups by hour
8, compared to GA hourly re-opt (~70) and static GA (~65). The gap widens following disruption events,
highlighting DRL's superior adaptive capacity in dynamic environments.

5. Discussion, Limitations, and Future Work
5.1. Key Findings and Contributions

Experimental results demonstrate clear deep reinforcement learning advantages for dynamic return routing.
The approach achieves 15.8% cost reduction versus genetic algorithms and 11.4 percentage point on-time
improvement. Gains stem from learning from experience capturing complex patterns, long-term cumulative
reward optimization producing globally efficient routes, real-time adaptation through rapid inference, and
generalization across instances eliminating repeated optimization.

Economic impact quantifies practical value. For medium retailers processing 75 daily returns per center, 15%
reduction translates to $6,935 annual savings per location. Scaling to 50 centers yields $346,750 annual
savings. Benefits include improved customer satisfaction, 16.8% fuel reduction supporting environmental
goals, and labor savings from 9.8% vehicle requirement decrease.

Deployment insights emerged from three-month pilots. Data quality significantly impacts performance - GPS
accuracy within 50 meters and reliable time windows are essential. Initial human oversight proves valuable
during first two weeks building operational trust. Driver training and clear communication improve
acceptance. Integration requires API connections to order management, GPS tracking, and mobile
a phcatilons. Gradual rollout minimizes risk: pilot at one-two centers for four-eight weeks, validate results,
then scale.

Transferability extends approach value. The framework applies to food delivery, parcel collection, medical
transportation, and waste collection. Transfer learning enables training on one area then fine-tuning for new
re%ions with minimal data, reducing training from 72 to 8 hours. Broader applicability spans technician
scheduling, ride-sharing optimization, and drone delivery.

5.2. Limitations and Open Challenges

Current work exhibits scope limitations. Single distribution center simplifies coordination but limits multi-
depot applicability. Extension to multi-agent reinforcement learning could enable coordinated fleet
management. Homogeneous fleet assumptions overlook mixed vehicle types with different capacities and
costs. Deterministic travel times ignore traffic uncertainty. Stochastic reinforcement learning could
incorporate uncertainty. Known time window assumptions require customer specification while real
operations might predict availability from historical patterns. Simplified return characteristics omit quality
and value variability.

Scalability challenges emerge at larger scales. Very large fleets exceeding 50 vehicles may strain centralized
decision-making, suggesting hierarchical approaches. Extremely high request rates beyond 500 daily could
exceed real-time inference capability, requiring algorithmic optimizations. Training data requirements pose
barriers for new regions lacking historical data. Concept drift from changing patterns may degrade policy
performance, necessitating periodic retraining.

5.3. Future Research Directions

Multi-agent coordination represents promising extension. Cooperative multi-agent reinforcement learning
enabling vehicle communication could improve load balancing through capacity and location sharing.
Coordinated pickups allowing one vehicle to handle nearby clusters would improve efficiency. Dynamic task
reallocation permitting request handoffs would optimize global performance. Challenges include credit
assignment, communication protocols, and joint action space complexity.
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Integration with demand forecasting could enhance proactive decision-making. Machine learning predicting
return volumes and locations based on sales patterns would enable better vehicle scheduling matc%ing fleet to
demand. Optimized depot positioning near high-return areas would reduce travel distances. Inventory pre-
positioning anticipating refurbishment needs would streamline operations. Hierarchical reinforcement
learning could address strategic decisions (fleet sizing) and tactical routing.

Sustainability objectives warrant explicit incorporation. Optimizing carbon emissions rather than distance
would support environmental goals. Route planning for electric vehicles considering charging stations would
enable greener fleets. Supporting circular economy through prioritizing repairable pickups and routing to
refurbishment centers would maximize value recovery. Multi-objective techniques including Pareto
exploration and constrained optimization could balance economic and environmental objectives.

5.4. Conclusion and Broader Impact

This research develops and validates novel deep reinforcement learning for dynamic return routing combining
graph attention networks with proximal policy optimization. Comprehensive evaluation demonstrates
substantial improvements: 15.8% cost reduction, 11.4 percentage point on-time gain, and 16.8% fuel decrease
versus industry methods. Computational analysis shows 0.28-second inference enabling real-time adaptation.
Ablation studies and sensitivity analyses validate design choices and demonstrate robustness.

Contributions advance reinforcement learning theory through novel problem formulation, graph-based
representation, and multi-objective reward engineering. Practical contributions include deployable algorithm
validated on operational data, detailed implementation guidance, and comprehensive performance
characterization. These advances provide foundations for intelligent, sustainable reverse logistics operations.

Broader implications span stakeholders. Logistics companies gain competitive advantages through superior
service at %)ower costs meeting sustainability commitments. E-commerce platforms improve customer
experiences through reliable convenient returns while reducing expenses. Consumers benefit From convenient
returns and reduced environmental footprint. Policymakers can leverage demonstrated emissions reductions
informing sustainable logistics regulations.

Deep reinforcement learning represents paradigm shifts from static optimization to adaptive agents
continuously learning and improving. As e-commerce growth continues and sustainability pressures intensify,
Al-driven logistics optimization transitions from competitive advantage to operational necessity. This research
establishes feasibility and provides foundations for next-generation intelligent reverse logistics systems
enabling circular economy where return flows achieve efficiency parity with forward delivery networks.
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