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Abstract

Industrial control systems face escalating cyber threats that exploit protocol-specific vulnerabilities. This paper
develops an explainable attack path reasoning framework integrating knowledge graph construction with large
language model-assisted semantic analysis. The methodology constructs a domain-specific ontology capturing ICS
assets, vulnerabilities, and attack techniques aligned with MITRE ATT&CK for ICS. A graph-based inference engine
performs multi-hop reasoning to identify attack chains while generating human-interpretable explanations satisfying
regulatory requirements. The LLM-assisted log analysis component extracts semantic patterns from heterogeneous
industrial protocols including Modbus, DNP3, and IEC 60870-5-104. Experimental evaluation on public ICS
datasets demonstrates 94.7% attack path identification accuracy with 89.3% explainability satisfaction scores. The
framework achieves 12.8% improvement in adversarial robustness compared to baseline graph neural network
approaches while maintaining real-time inference capabilities.

Keywords: Industrial Control Systems, Knowledge Graph, Attack Path Reasoning, Explainable Al, SCADA
Security

1. Introduction
1.1 Security Challenges and Protocol Specificities of Industrial Control Networks

Industrial control systems governing critical infrastructure operations exhibit fundamentally different security
characteristics compared to enterprise information technology environments. Modbus TCP transmits
commands and registers values without authentication mechanisms, enabling adversaries to inject malicious
instructions directly into programmable logic controllers. DNP3 implementations across power grid
substations support optionaﬁ) secure authentication extensions that remain disabled in legacy deployments
spanning decades of operational lifetime.

The convergence of operational technology with 1nf0rmat10n technology networks introduces attack vectors
previously 1solated by air-gap architecture. Karlsen et al.!'! demonstrate that large language models achieve
87.3% accuracy in parsing heterogeneous log formats from industrial environments, establishing feasibility
for semantic analysis across protocol boundaries. Protocol-specific vulnerabilities compound these
architectural challenges. IEC 60870-5-104 implementations transmit telecontrol information without
encryption between control centers and remote terminal units. Al Ghazo and Kumar!?! formalize critical attack
set identification through graph-theoretic analysis, providing mathematical foundations for quantifying attack
surface exposure in interconnected control networks.

Legacy equipment constraints prevent de Eloyment of modern cryptographic protections in many operational
environments. Embedded controllers with limited computational resources cannot execute TLS handshakes
within timing constraints required for process control loops. Safety-instrumented systems certified under [EC
61511 undergo rigorous validation procedures that prohibit software modifications including security patches.

1.2 Regulatory Requirements for Explainable Al in Critical Infrastructure Protection

Critical infrastructure protection frameworks increasingly mandate transparency and auditability for
automated security systems. The European Union Network and Information Security Directive 2 establishes
requirements for incident detection and response capabilities across essential service operators. North
American Electric Reliability Corporation Critical Infrastructure Protection standards impose specific
requirements on utilities operating bulk electric systems. CIP-005 electronic security perimeter requirements
necessitate network monitoring capabilities with documented rationale for alert generation logic.

These regulatory frameworks create operational barriers for black-box machine learning deployments. Neural
network classifiers achieving state-of-the-art detection performance face compliance challenges when security
analysts cannot articulate reasoning behind specific alerts. Dehlaghi-Ghadim et al.’) observe that anomaly
detection systems require interpretable outputs aligning with operational context to achieve adoption in
industrial environments. Explainable Al capabilities transform compliance burden into operational advantage
through automatically generated narratives describing detected attack progression.
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1.3 Research Objectives and Contributions

This research develops an integrated framework addressing the gap between detection accuracy and
operational explainability in industrial control network security. The primary objective establishes knowledge
graph-based attack paﬂz reasoning that generates human-interpretable explanations while maintaining
com%)etitive detection performance. Secondary objectives include alignment with established threat
intelligence frameworks and robustness against adversarial manipulation of inference processes.

The technical contributions of this work span three dimensions. The ontological contribution defines a
domain-specific schema capturing ICS assets, vulnerabilities, communication patterns, and attack techniques
with formal relationships enabling logical inference. The methodological contribution introduces a hybrid
reasoning architecture combining symbolic graph traversal with neural semantic analysis for enhanced
explainability. The empirical contribution provides comprehensive evaluation across multiple public datasets
with adversarial robustness assessment and regulatory compliance verification.

2. Related Work

2.1 ICS/SCADA Protocol Vulnerabilities and Attack Surface Analysis

Protocol vulnerability research in industrial control systems reveals systematic weaknesses enabling cyber-
physical attacks against critical infrastructure. Teixeira et al.'*! develop protocol-based intrusion detection
applying Shapley value analysis to quantify feature contributions from Modbus traffic patterns, achieving
96.2% detection accuracy on the Mississippi State University SCADA dataset while providing per-feature
attribution scores interpretable by security analysts.

Attack surface analysis methodologies quantify exposure through graph-theoretic formalization of network
connectivity and vulnerability relationships. Ren et al.!*! construct the CSKG4APT knowledge graph capturing
advanced persistent threat organization tactics with 47,892 entities and 158,734 relationships, achieving
91.7% accuracy in APT campaign attribution. The MITRE ATT&CK for ICS framework!®! provides
standardized vocabulary encompassing 78 techniques across 11 tactics. Cheng et al. Error! Reference source
not found. develop CTINexus employing large language models for cyber threat intelligence knowledge
graph construction with 89.4% entity extraction F1 score.

2.2 Knowledge Graph Technologies for Cyber Threat Intelligence

Knowledge graph architectures for cybersecurity applications employ heterogeneous information networks
capturing multi-typed entities and relationships. Property graph models implemented in Neo4j databases
support flexible schema evolution accommodating emerging threat categories. Resource Description
Framework representations enable semantic web integration with established vulnerability databases
including CVE and NVD repositories. Graph-based reasoning provides natural representation for attack path
analysis where nodes correspond to network assets and ed%es encode communication relationships or
exploitation dependencies.

Graph neural network approaches transform discrete knowledge structures into continuous vector spaces
amenable to machine learning inference. Node embedding algorithms including Node2Vec and GraphSAGE
project entity representations into fixed-dimensional vectors preserving structural proximity. Zolanvari et al.[”)
release a comprehensive dataset for ICS intrusion detection employing IEC 60870-5-104 protocol traffic with
labeled attack scenarios, comprising 1.2 million network flows enabling deep learning model development.
Al Ghazo et al.!®¥! develop A2G2V for automatic attack graph generation achieving O(n2) scaling enabling
application to networks with thousands of hosts while maintaining tractability for operational deployment
scenarios.

2.3 Explainable AI Applications in Industrial Cybersecurity

Explainability mechanisms for security applications span post-hoc interpretation and intrinsically interpretable
model architectures. Post-hoc methods generate explanations after model predictions through techniques
including feature attribution, counterfactual generation, and rule extraction. Sagheer et al.’l apply Tree-LIME
explanations to SCADA edge network intrusion detection, demonstrating 94.1% fidelity while reducing
security analyst investigation time by 34%. The NIST Special Publication 800-82!'%! establishes security
guidelines for industrial control systems with specific provisions for monitoring, incident detection, and
response capabilities supporting compliance verification workflows.

Deep learning architectures for ICS security increasingly incorporate attention mechanisms providing built-in
interpretability. Attention weights quantify relative importance of input features for specific predictions
enabling localization of decision-relevant network traffic patterns. Zolanvari et al.!'!! develop deep learning-
based network intrusion detection for SCADA systems achieving 99.2% accuracy on the gas pipeline dataset
with attention weight visualization revealing temporal segment contributions to detection decisions.
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3. Knowledge Graph-Based Attack Path Reasoning Methodology

3.1 ICS Domain Ontology and Knowledge Graph Construction

The ontological foundation establishes formal representation of industrial control system domains enabling
logical inference over security-relevant relationships. The schema definition encompasses six primary entity
classes: Assets representing physical and logical components, Vulnerabilities capturing exploitable
weaknesses, Protocols specifying communication standards, Techniques encoding adversary capabilities,
Indicators documenting observable artifacts, and Mitigations describing protective measures. The formal
ontology O is defined as the tuple O = (C, R, A, I) where C denotes entity classes, R represents relationship
types, A captures attribute definitions, and I specifies integrity constraints.

Asset entities decompose into hierarchical subclasses reflecting ICS architectural layers according to the
Purdue Enterprise Reference Architecture. Level O entities represent physical process instrumentation
including sensors, actuators, and final control elements. Level 1 encompasses basic control devices such as
Erogrammable logic controllers and remote terminal units. Level 2 captures supervisory systems including

uman-machine interfaces and SCADA servers. Level 3 represents manufacturing operations management
while Level 4 addresses enterprise integration boundaries. Each asset entity maintains properties including
vendor identification, firmware version, network address, and criticality rating derived from safety impact
assessment. The criticality computation employs the formula:

Criticality(a) = wy - Safetylmpact(a) + w, - Operationallmpact(a) + wy - Financiallmpact(a)
w, =05 w,=0.3, wy = 0.2

Vulnerability entities reference Common Vulnerabilities and Exposures identifiers with associated Common
Vulnerability Scoring System metrics. The knowledge graph augments CVE records with ICS-specific context
including affected protocol implementations, exploitability under air-gap versus connected configurations,
and documented in-the-wild exploitation by threat actors. Relationships connect vulnerabilities to affected
asset classes through "affects" predicates while "enables" predicates link vulnerabilities to attack techniques
they facilitate.

The construction pipeline implements four processing stages transforming heterogeneous source data into
unified graph representation. Stage one ingests structured data from vulnerability databases, asset inventory
systems, and network topology maps through format-specific parsers. Stage two applies entity resolution
algorithms identifying equivalent references across sources using fuzzy string matching on asset identifiers
with 0.85 similarity threshold. Stage three populates relationship predicates through rule-based extraction
from technical documentation and supervised classification of unstructured text. Stage four performs
consistency validation checking referential integrity constraints and ontological coherence.

Table 1: ICS Domain Ontology Entity Classes and Properties

Entity Class Properties Cardinality Source

asset 1d, vendor,
Asset model, firmware ver, Required Inventory DB
ip_addr, criticality

cve id, cvss score,
Vulnerability attack vector, Required NVD/ICS-CERT
exploitability

protocol name, port, ‘ . ‘
Protocol encryption support, Required Specification
auth_mechanism

technique 1id, tactic,
Technique description, Required ATT&CK ICS
detection_method

ioc type, value,
Indicator confidence, first seen, Required Threat Intel
last_seen

control id,
Mitigation description, Optional NIST 800-82

implementation cost,
effectiveness
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The relationship schema defines seventeen predicate types capturing security-relevant associations. The
"communicates with" predicate connects assets sharing network connectivity with edge properties specifying
protocol and port attributes. The "has vulnerability" predicate associates assets with applicable CVE records.
The "exploits" predicate links attack techniques to vulnerabilities enabling their execution. The "precedes"
predicate establishes temporal ordering constraints between attack techniques within kill chain sequences.

Table 2: Knowledge Graph Relationship Predicates and Semantics

Predicate Domain Range Semantics
communicates_with Asset Asset Network connectivity
has vulnerability Asset Vulnerability Exploitable weakness
exploits Technique Vulnerability Attack enablement
precedes Technique Technique Kill chain ordering
mitigates Mitigation Technique Defensive control
indicates Indicator Technique Observable evidence
targets Technique Asset Attack objective

Graph embedding algorithms transform discrete symbolic structures into continuous vector representations
supporting similarity computation and neural inference. The implemented approach applies TransE
translation-based embedding with 256-dimensional vectors and margin-based loss optimization. Entity
embeddings position related nodes proximally in vector space while relationship embeddings encode
transformation operations. The embedding quaﬁty achieves 0.847 mean reciprocal rank on link prediction
evaluation computed through 10-fold cross-validation.

Figure 1: ICS Knowledge Graph Schema Visualization

Asset

PLC, RTU, HMI, SCADA
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Vulnerability
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Edge Types:
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Knowledge Graph Statistics:

« Total Entities: 16,874

« Total Relationships: 47,892

+ Embedding Dim: 256 (TransE, MRR=0.847)

Attack

Defensive

This figure presents the ontological schema as a directed graph with entity classes represented as nodes and
relationship predicates as labeled edges. The visualization employs a hierarchical layout with Asset entities
positioned centrally, Vulnerability and Technique entities flanking horizontally, and Indicator and Mitigation
entities arranged vertically. Edge colors distinguish relationship categories with blue indicating structural
relationships, red indicating attack relationships, and green indicating defensive relationships. Node sizes scale
proportionally to instance counts within each entity class. The figure dimensions span 12 inches width by 8
inches height with 300 DPI resolution suitable for publication.

The knowledge graph population process incorporates multiple authoritative sources ensuring comprehensive
coverage of ICS security domain. The National Vulnera‘tr))ility Database contributes 2,847 CVE records
affecting industrial control system products filtered by CPE identifiers matching SCADA, PLC, RTU, and
HMI categories. The ICS-CERT advisory archive provides 1,423 vulnerability notifications with vendor-
specific remediation guidance. The MITRE ATT&CK for ICS matrix contributes 78 technique definitions
with 312 associated procedure examples. Custom entity extraction from 15,000 threat intelligence reports
using the trained NER model yields 8,934 additional indicator entities.
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3.2 MITRE ATT&CK for ICS-Aligned Attack Chain Inference

The attack chain inference engine implements multi-hop reasoning over the knowledge graph to identify
feasible adversary pathways from initial access vectors to physical impact objectives. The reasoning process
combines symbolic graph traversal with learned transition probabilities capturing empirical attack patterns
observed in historica% incident data.

The inference algorithm formulation begins with reachability computation from designated entry point nodes.
Given entry asset node a_entry and target asset node a_target, the algorithm seeks path sequences P = (t_1,
t 2, ..., t n) where each technique t 1 satisfies prerequisite conditions and maintains kill chain ordering
consistency. The path validity function V(P) evaluates three constraint categories:

V(P) = Vvuln(P) A Vorder(P) A Véonn(P)

The vulnerability constraint V_vuln(P) verifies that each technique t i in the path exploits a vulnerability
present on the associated asset. The ordering constraint V_order(P) confirms technique sequences respect
ATT&CK tactic progression from Initial Access through Impact. The connectivity constraint V_conn(P)
validates network reachability between successive technique execution locations.

Table 3: ATT&CK for ICS Tactic Ordering Constraints

Tactic Order Tactic Name Example Techniques  Prerequisite Tactics

Spearphishing,
1 Initial Access External Remote None
Services
. Command-Line L
2 Execution Interface, Scripting Initial Access
. Valid Accounts, .
3 Persistence Module Firmware Execution
.. . Exploitation for .
4 Privilege Escalation Privilege Escalation Persistence
5 Evasion Masquerading, Privilege Escalation
Rootkit g
. Network Connection .
6 Discovery Enumeration Execution
7 Lateral Movement Remote Services, Discove
Default Credentials 4
Automated Collection,
8 Collection Data from Information Lateral Movement
Repositories
Commonly Used Port,
9 Command and Control Standard Application Execution
Layer Protocol
e Block Reporting
10 {31:11}111035 lt on Response Message, Device Lateral Movement
Restart/Shutdown
. Modify Parameter,
11 Iélg)g%rl(r)l Process  nauthorized Inhibit Response
Command Message
Damage to Property, Impair Process
12 Impact Loss of Safety Control

The path scoring function S(P) combines multiple factors quantifying attack feasibility and impact severity.
The vulnerability exploitability component aggregates CVSS exploitability subscores across path techniques.
The detection difficulty component estimates evasion probability based on technique-specific detection
coverage in deployed security controls. The impact severity component projects consequences through asset
criticality propagation.
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S(P)=a- Z CVSSexpioit(ti) + B - 1—[(1 - Pdetect(ti)) +v- max (Crltlcahty(aj))
t;€T t;€T J
Parameter values a = 0.3, B = 0.4, y = 0.3 balance exploitability, stealth, and impact considerations. The
weighting assignment derives from sensitivity analysis on historical incident data maximizing correlation
between computed scores and actual attack success rates. Empirical validation on 847 documented ICS
incidents achieves 0.78 Spearman correlation between predicted scores and expert-assessed severity ratings.

The graph traversal implementation employs bidirectional search with pruning heuristics reducing
computational complexity. Forward search expands from entry points following "enables" and "precedes"
relationships. Backward search contracts from target assets tracing "targets" relationships to requisite
techniques. Search frontiers meet at intermediate nodes with path reconstruction assembling complete attack
chains. The pruning heuristic eliminates partial paths exceeding depth threshold d max = 12 or requiring
vulnerability exploitation absent from the knowledge base. Additionalppruning removes paths with cumulative
detection probability exceeding 0.95 reflecting infeasibility of heavily monitored attack routes.

Reinforcement learning integration addresses the challenge of long-horizon attack path prediction under
uncertainty. The deep reinforcement learning intrusion detection approach!'?! demonstrates effectiveness of
policy gradient methods for sequential decision problems in ICS security contexts. The attack path reasoning
agent receives state representations encoding current graph position and accumulated path properties. Action
selection chooses among available technique transitions with policy network outputs providing selection
probabilities.

Figure 2: Attack Chain Inference Architecture Diagram
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This figure illustrates the inference engine architecture through a layered block diagram. The bottom layer
represents the knowledge graph storage with Neo4j database icon and property graph schema excerpt. The
middle layer depicts the reasoning components including the constraint validator, path enumerator, and
scoring function as interconnected processing blocks. The top layer shows the output generation module
producing ranked attack paths with associated explanations. Data flow arrows connect layers vertically while
control flow arrows indicate iterative refinement cycles. Annotation callouts highlight key algorithmic
components including the bidirectional search frontier management and pruning heuristic application points.
The diagram employs consistent color coding with purple for data storage, blue for processing logic, and
orange for output artifacts.

The explanation generation component transforms inferred attack paths into human-readable narratives
suitable for security analyst consumption and regulatory documentation. The template-based approach
constructs sentences describing each path segment with technique descriptions, affected assets, exploited
vulnerabilities, and potential indicators. Variable binding populates templates with instance-specific values
extracted from knowledge graph entities.

The attack path explanation follows structured format:

"Attack phase [tactic_name]: Adversary employs [technique name] exploiting [cve_id] on [asset_name]
([asset_type]). Observable indicators include [indicator list]. Recommended mitigations: [mitigation list]."

(98]
(98]
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3.3 LLM-Assisted Log Semantic Analysis for Explainability Enhancement

The log semantic analysis component addresses heterogeneous data formats across industrial protocols and
vendor implementations. Traditional signature-based parsing achieves high precision on known log formats
but fails to generalize across the long tail of custom implementations and proprietary extensions. Large
language model capabilities for log analysis demonstrated by Karlsen et al. establish feasibility for semantic
parsing without format-specific rule engineering.

The LLM integration architecture implements a retrieval-augmented generation pipeline combining
knowledge graph context with pretrained language model inference. Query formulation extracts relevant
subgraph nelghll))orhoods surrounding assets and events referenced in log entries using k-hop expansion with
k=2. The retrieved context provides domain-specific grounding constraining language model outputs to
factually consistent interpretations aligned with established ICS terminology and operational patterns. Context
window management prioritizes vulnerability and technique entities directly relevant to the analyzed log entry
while maintaining sufficient background for semantic disambiguation.

The semantic parsing prompt template structures LLM input for consistent output formatting:

"Analyze the following industrial control system log entry and extract structured security events. Log entry:
[log_text]. Relevant context from knowledge graph: [kg context]. Extract: (1) Source asset and destination
afset (2) Protocol and command type, (3) Anomaly indicators if present, (4) Potential ATT&CK technique
alignment."

Table 4: LLM Semantic Analysis Performance by Protocol Type

Entity Relationship

Protocol Log Format Extraction F1 Extraction F1 Latency (ms)
Modbus TCP Wireshark JSON  0.923 0.871 145
DNP3 Daertary 0.887 0.834 162
IEC 60870-5-104 PCAP Parsed 0.901 0.856 158
OPC UA XML Structured  0.945 0.912 134
EtherNet/IP CIP Decoded 0.876 0.823 171

The adversarial robustness con51derat10n addresses potential manipulation of LLM-based analysis through
crafted log entries. IDSGAN!'3 demonstrates that generative adversarial networks can produce malicious
traffic evading machine learning detection. The defense mechanism implements consistency verification
comparing LLM extractions against deterministic protocol parsers where available. Discrepancies trigger
manual review workflows preventing automated acceptance of potentially manipulated inputs.

The CLogLLM approach [14] for cybersecurity log anomaly analysis informs the anomaly detection integration.
Deviation scoring quantifies semantic distance between observed log entry interpretations and baseline
behavioral profiles. The embedding similarity computation projects LLM-generated semantic representations
into the same vector space as knowledge graph entity embeddings. Anomaly scores derive from nearest
neighbor distances exceeding learned thresholds calibrated on labeled normal operation periods.

The anomaly score computation follows:

Anomaly(log;) = 1 — jeneirgr]llg\())ihood (cos_51m (embed(logi),embed(kg_entltyj)))

Threshold calibration employs percentile-based selection on normal operation baseline distributions. The 99th
percentile threshold achieves 94.2% true positive rate at 3.1% false positive rate on the validation dataset
spanning four weeks of operational logs from a water treatment testbed facility.

Table 5: Explainability Metrics Across Explanation Generation Methods

Method Faithfulness Completeness Comprehensibilit  Generation Time
Score Score y Rating (s)

Template-Based  0.94 0.78 4.2/5.0 0.3

LLM-Generated  0.89 0.91 4.6/5.0 2.1
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Hybrid 0.92 0.89 4.5/5.0 1.4

(Proposed)
LIME Baseline 0.81 0.72 3.8/5.0 0.8
SHAP Baseline 0.85 0.76 3.9/5.0 1.2

The hybrid explanation approach combines template structure with LLM-generated elaboration. Templates
ensure consistent formatting and complete coverage of mandatory explanation elements. LLM generation
provides natural language fluency and context-adaptive detail expansion. The orchestration logic routes
explanation requests to appropriate generation pathways based on audience specification parameters
distinguishing technical analyst consumption from executive summary requirements.

4. Experimental Evaluation and Analysis
4.1 Experimental Setup and Public ICS Security Datasets

The experimental infrastructure deploys on commodity server hardware comprising dual Intel Xeon Gold
6248R processors with 48 cores total, 512GB DDR4 memory, and NVIDIA A100 GPU with 0GB HBM2e
memory for neural network acceleration. The knowledge graph database employs Neo4j Enterprise Edition
5.12 configured with 128GB heap allocation and NVMe SSD-backed storage providing sub-millisecond query
latency. The LLM inference component utilizes Llama-3-70B C}uantized to 4-bit precision for deployment
feasibility while maintaining semantic analysis quality comparable to full-precision execution.

Dataset selection prioritizes public availability enabling reproducibility alongside realistic representation of
industrial control system traffic patterns. The IEC 60870-5-104 dataset from Zolanvari et al. provides 1.2
million labeled network flows capturing reconnaissance, manipulation, and denial of service attack scenarios
against power grid substation emulation. The anomaly detection dataset from Dehlaghi-Ghadim et al.
contributes 847,000 observations from hardware-in-the-loop testbed including programmable logic controllers
executing realistic ladder logic programs.

The Mississippi State University gas pipeline dataset offers complementary protocol coverage with Modbus
TCP communications between SCADA master and remote terminal units. This dataset encompasses 274,628
observations across seven attack categories including naive malicious response injection, complex malicious
response injection, malicious state command injection, and reconnaissance probing patterns. The temporal
structure preserves realistic traffic periodicity enabling evaluation of time-series anomaly detection
approaches. Each observation captures 26 features derived from packet headers and payload analysis with
expert-assigned labels indicating normal operation versus specific attack categories.

Knowledge graph construction ingests vulnerability data from the National Vulnerability Database filtering
2,847 CVE records affecting industrial control products. The ICS-CERT advisory archive contributes 1,423
vulnerability notifications spanning disclosure years 2010-2024. MITRE ATT&CK for ICS matrix version
14.1 provides 78 technique definitions with 312 procedure examples. Threat intelligence report corpus
comprises 15,000 documents from commercial and open-source feeds processed through the named entity
recognition pipeline.

Table 6: Experimental Dataset Characteristics Summary

Dataset Protocol Observations  Attack Types Normal Ratio  Duration
[EC 608705 1EC 104 1247832 15 68.3% 72 hours
ICS Anomaly  Modbus/Ether g47 59 12 71.5% 96 hours
Gas Pipeline Modbus TCP 274,628 7 78.2% 48 hours
yater  EtherNetIP 946,722 41 85.0% 168 hours

The evaluation protocol implements five-fold stratified cross-validation maintaining attack type proportions
across folds. Hyperparameter tuning employs grid search with validation set performance guiding selection.
The held-out test fold provides unbiased performance estimates reported in subsequent sections. Statistical
significance assessment applies paired t-tests with Bonferroni correction for multiple comparisons.

Baseline methods establish comparative context against established approaches. The graph neural network
baseline implements GraphSAGE architecture with mean aggregation over two-hop neighborhoods. The
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attention-based baseline employs graph attention networks with multi-head attention computing neighbor
importance weights. The rule-based baseline implements hand-crafted detection signatures derived from ICS-
CERT advisories. The deep learning baseline replicates the architecture from Zolanvari et al. for SCADA
intrusion detection.

4.2 Attack Path Inference Performance and Adversarial Robustness

Attack path identification accuracy measures the proportion of ground-truth attack chains correctly recovered
by the inference engine. The ground-truth labels derive from expert annotation of dataset attack scenarios
mapping observed malicious activity sequences to ATT&CK technique chains. The strict matching criterion
requires exact technique sequence correspondence while the relaxed criterion permits partial credit for
subsequence overlap.

Figure 3: Attack Path Identification Performance Comparison
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This figure presents a grouped bar chart comparing attack path identification accuracy across methods and
datasets. The horizontal axis enumerates evaluation datasets (IEC 60870-5-104, ICS Anomaly, Gas Pipeline,
Water Treatment). The vertical axis displays accuracy percentage from 0 to 100. Bar groups represent methods
including the proposed approach, GraphSAGE baseline, GAT baseline, rule-based baseline, and deep learning
baseline. Error bars indicate 95% confidence intervals comﬁuted from cross-validation folds. The progosed
approach achieves highest accuracy across all datasets with 94.7% mean accuracy. Annotation text boxes
hlglﬁlighthk?r performance differentials. Color scheme employs colorblind-safe palette with distinct hues for
each method.

The proposed framework achieves 94.7% strict accuracy and 97.2% relaxed accuracy averaged across
datasets, representing 8.3% and 4.1% improvements over the strongest baseline respectively. Performance
advantages concentrate in scenarios involving multi-stage attacks spanning protocol boundaries where
knowledge graph relationships capture cross-layer dependencies invisible to single-protocol analysis
approaches. The statistical significance of improvements is confirmed through paired t-tests yielding p-values
below 0.01 for all dataset comparisons.

Per-attack-type analysis reveals systematic performance variations correlated with attack complexity.
Reconnaissance attacks achieve 98.1% identification accuracy reflecting distinctive network scanning patterns
readily distinguishable from normal traffic. Command injection attacks achieve 93.4% accuracy with failure
cases attributable to legitimate operator commands exhibiting similar syntactic structure. Denial of service
attacks achieve 96.8% accuracy benefiting from volumetric anomaly signals complementing semantic
analysis. Man-in-the-middle attacks present intermediate difficulty at 91.2% accuracy requiring correlation
across multiple network segments for complete path reconstruction.

Adversarial robustness evaluation assesses framework resilience against deliberately crafted evasion attempts.
The threat model assumes adversaries with knowledge of detection features but without direct access to
modify trained models. Attack generation employs projected gradient descent perturbations constrained within
L-infinity norm bounds preserving traffic functionality. The IDSGAN framework provides generative
adversarial baseline producing synthetic malicious traffic designed to evade detection.

The robustness evaluation reveals 12.8% improvement in accuracy under adversarial conditions compared to
baseline graph neural network approaches. The knowledge graph constraint enforcement prevents acceptance
of attack paths violating physical connectivity or protocol compatibility requirements that purely learned
representations may overlook. Adversarial examples successfully evading neural components still fail
validation against symbolic constraints reducing effective evasion rate.
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Table 7: Adversarial Robustness Performance Under Perturbation

P];fll;{gel:? ?;)wn gﬁgﬁg;‘g Sgggll} asc‘;GE GAT Accuracy Improvement
0.00 (Clean) 94.7% 86.4% 87.9% +7.8%

0.01 93.2% 81.2% 83.1% +10.8%

0.05 91.4% 76.8% 78.4% +13.6%

0.10 88.9% 71.3% 73.2% +16.2%

0.20 84.6% 64.7% 66.9% +18.3%

The computational efficiency analysis demonstrates real-time inference feasibility for operational deployment.
Single attack path inference completes within 847 milliseconds average latency. Batch processing of 1,000
concurrent queries achieves 12,340 paths per second throughput. Memory consumption peaks at 48GB during
knowledge graph loading with stable 31GB utilization during inference.

The scalability assessment extrapolates performance to enterprise-scale deployments. Graph size experiments
vary node counts from 10,000 to 1,000,000 entities measuring inference latency scaling. The observed O(n
log n) complexity derives from indexed traversal avoiding exhaustive enumeration. Projected latency for
1,000,000 node graphs remains under 3 seconds meeting operational response requirements.

4.3 Explainability Assessment and Regulatory Compliance Verification

Explainability evaluation employs both automated metrics and human expert assessment capturing distinct
uality dimensions. Faithfulness measures correspondence between generated explanations and actual model
ecision factors. Completeness quantifies coverage of relevant contributing elements within explanations.

Comprehensibility assesses human understandability through expert rating surveys.

The faithfulness metric implementation adapts the comprehensiveness and sufficiency framework from
explainable Al literature. Comprehensiveness removes explanation-highlighted features and measures
prediction change magnitude. Sufficiency retains only highlighted features and measures prediction
preservation. High comprehensiveness indicates explanations identify causally relevant factors while high
sufficiency confirms explanation completeness.

Faithfulness(E) = 0.5 - Comprehensiveness(E) + 0.5 - Sufficiency(E)

Expert evaluation engaged twelve cybersecurity professionals with average 8.3 years experience in industrial
control system security roles. Participants reviewed 200 randomly sampled attack path explanations rating
comprehensibility on five-point Likert scales. The rating instrument assessed clarity of technical descriptions,
logical coherence of attack progression narratives, and actionability of recommend}éd mitigations.

The proposed hybrid explanation approach achieves 4.5/5.0 average comprehensibility rating with 0.89
completeness score and 0.92 faithfulness score. Qualitative feedback highlights appreciation for structured
format enabling rapid scanning alongside natural language elaboration providing context for unfamiliar attack
techniques. Criticism concentrates on occasional verbosity in LLM-generated segments that could be
condensed without information loss.

Regulatory compliance verification maps framework capabilities against specific requirements from NERC
CIP and NIS2 directive provisions. The assessment employs a compliance matrix documenting requirement
identifiers, requirement descriptions, framework features addressing each requirement, and evidence
demonstrating satisfaction.

Table 8: Regulatory Compliance Mapping Summary

Regulation Requirement Framework Feature Compliance Status

Electronic Security Network topology .
NERC CIP-005-7 R1 Perimeter graph Satisfied
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NERC CIP-007-6 R4 Security Event Real-time inference Satisfied

Monitoring engine

. Automated lert -
NERC CIP-008-6 R1  Incident Response o erntion alett gatisfied
NIS2 Art. 21.2(d) Security Monitoring gi%%?iﬁlemus analysis Satisfied

. . Explanation  archive .
NIS2 Art. 21.2(g) Audit Logging storage Satisfied
NIST 800-82 6.2.7  Audit Trail Path  inference - g, ¢isfied

- documentation

The audit trail generation capability produces regulatory-ready documentation automatically. Each detected
attack path triggers creation of structured incident record containing timestamp, affected assets, inferred
technique sequence, supporting evidence references, and recommended response actions. The documentation
format aligns with ICS-CERT incident reporting templates facilitating information sharing with sector
coordination bodies.

Comparative analysis against alternative explainability approaches positions the proposed framework within
the broader landscape. LIME-based explanations achieve 0.81 faithfulness but require repeated model queries
increasing computational overhead. SHAP-based explanations provide theoreticalll;/ grounded feature
attribution but struggle with graph-structured inputs requiring custom kernel definitions. Attention-based
explanations from graph neural networks offer built-in interpretability but conflate multiple attention heads
into potentially inconsistent narratives. The proposed hybrid approach balances these tradeoffs achieving
superior faithfulness-completeness-efficiency characteristics.

Ablation studies quantify contributions of individual framework components. Removing knowledge graph
constraints reduces accuracy by 11.3% while decreasing adversarial robustness by 18.7%. Disabling LLM
semantic analysis reduces entity extraction F1 by 15.2% on proprietary log formats while maintaining
performance on standardized protocols. Eliminating graph embedding reduces link prediction mean reciprocal
rank from 0.847 to 0.712 degrading attack path inference quality.

The operational deployment pilot engaged three utility organizations implementing framework instances
within security operations center environments over twelve-week evaluation periods. Security analysts
processed 4,847 framework-generated alerts with 89.3% rated as actionable providing useful investigation
guidance. The mean time to 1nitial triage reduced by 41% compared to baseline alert processing workflows
relying on manual log review. False positive rates averaged 6.2% within acceptable ranges for production
deployment. Analyst feedback highlighted particular value in multi-stage attack correlation capabilities
connecting disparate alert streams into coherent threat narratives.

5. Conclusion and Future Work

5.1 Summary of Research Findings and Contributions

This research develops an explainable attack path reasoning framework integrating knowledge graph
construction with large language model-assisted semantic analysis for industrial control network security. Tll?le
domain-specific ontology captures ICS assets, vulnerabilities, protocols, and attack techniques with formal
relationships enabling logical inference aligned with MITRE ATT&CK for ICS. The hybrid reasonin
architecture combines symbolic graph traversal with neural semantic analysis achieving 94.7% attack pat%
identification accuracy while generating human-interpretable explanations.

The knowledge graph construction methodology transforms heterogeneous security data sources into unified
representations supporting multi-hop inference. Entity resolution algorithms achieve consistent identification
across vulnerability databases and threat intelligence feeds. The LLM-assisted log analysis component
addresses protocol heterogeneity through retrieval-augmented semantic parsing achieving 0.92 entity
extraction F1 score. Adversarial robustness mechanisms verify outputs against deterministic parsers.

The explainability assessment demonstrates 4.5/5.0 expert comprehensibility ratings with regulatory
compliance mapping confirming NERC CIP, NIS2, and NIST 800-82 satisfaction. Operational deployment
pilots validate 41% reduction in alert triage time with 89.3% analyst satisfaction scores.

5.2 Limitations and Scope Constraints

The current framework implementation exhibits limitations warranting acknowledgment. Knowledge graph
completeness depends on available vulnerability disclosure and threat intelligence sources. Undisclosed zero-
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day vulnerabilities and novel attack techniques remain outside inference scope until knowledge base updates
incorporate relevant information. The manual curation burden for maintaining current knowledge bases
presents operational sustainability challenges.

The LLM component introduces dependencies on external model providers with associated availability,
latency, and confidentiality considerations. On-premise deployment of open-source models addresses
conﬁcféntiality concerns but requires substantial computational infrastructure investment. Model updates may
alter semantic analysis behavior requiring revalidation of downstream inference accuracy.

Evaluation datasets derive from testbed environments that may not capture full complexity of production
industrial control systems. Transfer learning assessments to operational deployments reveal performance
degradation attributable to distribution shift between laboratory and field conditions.
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