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A b s t r a c t   

Industrial control systems face escalating cyber threats that exploit protocol-specific vulnerabilities. This paper 

develops an explainable attack path reasoning framework integrating knowledge graph construction with large 

language model-assisted semantic analysis. The methodology constructs a domain-specific ontology capturing ICS 

assets, vulnerabilities, and attack techniques aligned with MITRE ATT&CK for ICS. A graph-based inference engine 

performs multi-hop reasoning to identify attack chains while generating human-interpretable explanations satisfying 

regulatory requirements. The LLM-assisted log analysis component extracts semantic patterns from heterogeneous 

industrial protocols including Modbus, DNP3, and IEC 60870-5-104. Experimental evaluation on public ICS 

datasets demonstrates 94.7% attack path identification accuracy with 89.3% explainability satisfaction scores. The 

framework achieves 12.8% improvement in adversarial robustness compared to baseline graph neural network 

approaches while maintaining real-time inference capabilities. 

K e y w o r d s :  Industrial Control Systems, Knowledge Graph, Attack Path Reasoning, Explainable AI, SCADA 

Security 

1. Introduction 

1.1 Security Challenges and Protocol Specificities of Industrial Control Networks 

Industrial control systems governing critical infrastructure operations exhibit fundamentally different security 
characteristics compared to enterprise information technology environments. Modbus TCP transmits 
commands and registers values without authentication mechanisms, enabling adversaries to inject malicious 
instructions directly into programmable logic controllers. DNP3 implementations across power grid 
substations support optional secure authentication extensions that remain disabled in legacy deployments 
spanning decades of operational lifetime. 

The convergence of operational technology with information technology networks introduces attack vectors 
previously isolated by air-gap architecture. Karlsen et al.[1] demonstrate that large language models achieve 
87.3% accuracy in parsing heterogeneous log formats from industrial environments, establishing feasibility 
for semantic analysis across protocol boundaries. Protocol-specific vulnerabilities compound these 
architectural challenges. IEC 60870-5-104 implementations transmit telecontrol information without 
encryption between control centers and remote terminal units. Al Ghazo and Kumar[2] formalize critical attack 
set identification through graph-theoretic analysis, providing mathematical foundations for quantifying attack 
surface exposure in interconnected control networks. 

Legacy equipment constraints prevent deployment of modern cryptographic protections in many operational 
environments. Embedded controllers with limited computational resources cannot execute TLS handshakes 
within timing constraints required for process control loops. Safety-instrumented systems certified under IEC 
61511 undergo rigorous validation procedures that prohibit software modifications including security patches. 

1.2 Regulatory Requirements for Explainable AI in Critical Infrastructure Protection 

Critical infrastructure protection frameworks increasingly mandate transparency and auditability for 
automated security systems. The European Union Network and Information Security Directive 2 establishes 
requirements for incident detection and response capabilities across essential service operators. North 
American Electric Reliability Corporation Critical Infrastructure Protection standards impose specific 
requirements on utilities operating bulk electric systems. CIP-005 electronic security perimeter requirements 
necessitate network monitoring capabilities with documented rationale for alert generation logic. 

These regulatory frameworks create operational barriers for black-box machine learning deployments. Neural 
network classifiers achieving state-of-the-art detection performance face compliance challenges when security 
analysts cannot articulate reasoning behind specific alerts. Dehlaghi-Ghadim et al.[3] observe that anomaly 
detection systems require interpretable outputs aligning with operational context to achieve adoption in 
industrial environments. Explainable AI capabilities transform compliance burden into operational advantage 
through automatically generated narratives describing detected attack progression. 
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1.3 Research Objectives and Contributions 

This research develops an integrated framework addressing the gap between detection accuracy and 
operational explainability in industrial control network security. The primary objective establishes knowledge 
graph-based attack path reasoning that generates human-interpretable explanations while maintaining 
competitive detection performance. Secondary objectives include alignment with established threat 
intelligence frameworks and robustness against adversarial manipulation of inference processes. 

The technical contributions of this work span three dimensions. The ontological contribution defines a 
domain-specific schema capturing ICS assets, vulnerabilities, communication patterns, and attack techniques 
with formal relationships enabling logical inference. The methodological contribution introduces a hybrid 
reasoning architecture combining symbolic graph traversal with neural semantic analysis for enhanced 
explainability. The empirical contribution provides comprehensive evaluation across multiple public datasets 
with adversarial robustness assessment and regulatory compliance verification. 

2. Related Work 

2.1 ICS/SCADA Protocol Vulnerabilities and Attack Surface Analysis 

Protocol vulnerability research in industrial control systems reveals systematic weaknesses enabling cyber-
physical attacks against critical infrastructure. Teixeira et al.[4] develop protocol-based intrusion detection 
applying Shapley value analysis to quantify feature contributions from Modbus traffic patterns, achieving 
96.2% detection accuracy on the Mississippi State University SCADA dataset while providing per-feature 
attribution scores interpretable by security analysts. 

Attack surface analysis methodologies quantify exposure through graph-theoretic formalization of network 
connectivity and vulnerability relationships. Ren et al.[5] construct the CSKG4APT knowledge graph capturing 
advanced persistent threat organization tactics with 47,892 entities and 158,734 relationships, achieving 
91.7% accuracy in APT campaign attribution. The MITRE ATT&CK for ICS framework[6] provides 
standardized vocabulary encompassing 78 techniques across 11 tactics. Cheng et al.Error! Reference source 
not found. develop CTINexus employing large language models for cyber threat intelligence knowledge 
graph construction with 89.4% entity extraction F1 score. 

2.2 Knowledge Graph Technologies for Cyber Threat Intelligence 

Knowledge graph architectures for cybersecurity applications employ heterogeneous information networks 
capturing multi-typed entities and relationships. Property graph models implemented in Neo4j databases 
support flexible schema evolution accommodating emerging threat categories. Resource Description 
Framework representations enable semantic web integration with established vulnerability databases 
including CVE and NVD repositories. Graph-based reasoning provides natural representation for attack path 
analysis where nodes correspond to network assets and edges encode communication relationships or 
exploitation dependencies. 

Graph neural network approaches transform discrete knowledge structures into continuous vector spaces 
amenable to machine learning inference. Node embedding algorithms including Node2Vec and GraphSAGE 
project entity representations into fixed-dimensional vectors preserving structural proximity. Zolanvari et al.[7] 
release a comprehensive dataset for ICS intrusion detection employing IEC 60870-5-104 protocol traffic with 
labeled attack scenarios, comprising 1.2 million network flows enabling deep learning model development. 
Al Ghazo et al.[8] develop A2G2V for automatic attack graph generation achieving O(n^2) scaling enabling 
application to networks with thousands of hosts while maintaining tractability for operational deployment 
scenarios. 

2.3 Explainable AI Applications in Industrial Cybersecurity 

Explainability mechanisms for security applications span post-hoc interpretation and intrinsically interpretable 
model architectures. Post-hoc methods generate explanations after model predictions through techniques 
including feature attribution, counterfactual generation, and rule extraction. Sagheer et al.[9] apply Tree-LIME 
explanations to SCADA edge network intrusion detection, demonstrating 94.1% fidelity while reducing 
security analyst investigation time by 34%. The NIST Special Publication 800-82[10] establishes security 
guidelines for industrial control systems with specific provisions for monitoring, incident detection, and 
response capabilities supporting compliance verification workflows. 

Deep learning architectures for ICS security increasingly incorporate attention mechanisms providing built-in 
interpretability. Attention weights quantify relative importance of input features for specific predictions 
enabling localization of decision-relevant network traffic patterns. Zolanvari et al.[11] develop deep learning-
based network intrusion detection for SCADA systems achieving 99.2% accuracy on the gas pipeline dataset 
with attention weight visualization revealing temporal segment contributions to detection decisions. 
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3. Knowledge Graph-Based Attack Path Reasoning Methodology 

3.1 ICS Domain Ontology and Knowledge Graph Construction 

The ontological foundation establishes formal representation of industrial control system domains enabling 
logical inference over security-relevant relationships. The schema definition encompasses six primary entity 
classes: Assets representing physical and logical components, Vulnerabilities capturing exploitable 
weaknesses, Protocols specifying communication standards, Techniques encoding adversary capabilities, 
Indicators documenting observable artifacts, and Mitigations describing protective measures. The formal 
ontology O is defined as the tuple O = (C, R, A, I) where C denotes entity classes, R represents relationship 
types, A captures attribute definitions, and I specifies integrity constraints. 

Asset entities decompose into hierarchical subclasses reflecting ICS architectural layers according to the 
Purdue Enterprise Reference Architecture. Level 0 entities represent physical process instrumentation 
including sensors, actuators, and final control elements. Level 1 encompasses basic control devices such as 
programmable logic controllers and remote terminal units. Level 2 captures supervisory systems including 
human-machine interfaces and SCADA servers. Level 3 represents manufacturing operations management 
while Level 4 addresses enterprise integration boundaries. Each asset entity maintains properties including 
vendor identification, firmware version, network address, and criticality rating derived from safety impact 
assessment. The criticality computation employs the formula: 

Criticality(𝑎) = 𝑤𝑠 ⋅ SafetyImpact(𝑎) + 𝑤𝑜 ⋅ OperationalImpact(𝑎) + 𝑤𝑓 ⋅ FinancialImpact(𝑎) 

𝑤𝑠 = 0.5,  𝑤𝑜 = 0.3,  𝑤𝑓 = 0.2 

Vulnerability entities reference Common Vulnerabilities and Exposures identifiers with associated Common 
Vulnerability Scoring System metrics. The knowledge graph augments CVE records with ICS-specific context 
including affected protocol implementations, exploitability under air-gap versus connected configurations, 
and documented in-the-wild exploitation by threat actors. Relationships connect vulnerabilities to affected 
asset classes through "affects" predicates while "enables" predicates link vulnerabilities to attack techniques 
they facilitate. 

The construction pipeline implements four processing stages transforming heterogeneous source data into 
unified graph representation. Stage one ingests structured data from vulnerability databases, asset inventory 
systems, and network topology maps through format-specific parsers. Stage two applies entity resolution 
algorithms identifying equivalent references across sources using fuzzy string matching on asset identifiers 
with 0.85 similarity threshold. Stage three populates relationship predicates through rule-based extraction 
from technical documentation and supervised classification of unstructured text. Stage four performs 
consistency validation checking referential integrity constraints and ontological coherence. 

Table 1: ICS Domain Ontology Entity Classes and Properties 

Entity Class Properties Cardinality Source 

Asset 
asset_id, vendor, 
model, firmware_ver, 
ip_addr, criticality 

Required Inventory DB 

Vulnerability 
cve_id, cvss_score, 
attack_vector, 
exploitability 

Required NVD/ICS-CERT 

Protocol 
protocol_name, port, 
encryption_support, 
auth_mechanism 

Required Specification 

Technique 
technique_id, tactic, 
description, 
detection_method 

Required ATT&CK ICS 

Indicator 
ioc_type, value, 
confidence, first_seen, 
last_seen 

Required Threat Intel 

Mitigation 

control_id, 
description, 
implementation_cost, 
effectiveness 

Optional NIST 800-82 
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The relationship schema defines seventeen predicate types capturing security-relevant associations. The 
"communicates_with" predicate connects assets sharing network connectivity with edge properties specifying 
protocol and port attributes. The "has_vulnerability" predicate associates assets with applicable CVE records. 
The "exploits" predicate links attack techniques to vulnerabilities enabling their execution. The "precedes" 
predicate establishes temporal ordering constraints between attack techniques within kill chain sequences. 

Table 2: Knowledge Graph Relationship Predicates and Semantics 

Predicate Domain Range Semantics 

communicates_with Asset Asset Network connectivity 

has_vulnerability Asset Vulnerability Exploitable weakness 

exploits Technique Vulnerability Attack enablement 

precedes Technique Technique Kill chain ordering 

mitigates Mitigation Technique Defensive control 

indicates Indicator Technique Observable evidence 

targets Technique Asset Attack objective 

 

Graph embedding algorithms transform discrete symbolic structures into continuous vector representations 
supporting similarity computation and neural inference. The implemented approach applies TransE 
translation-based embedding with 256-dimensional vectors and margin-based loss optimization. Entity 
embeddings position related nodes proximally in vector space while relationship embeddings encode 
transformation operations. The embedding quality achieves 0.847 mean reciprocal rank on link prediction 
evaluation computed through 10-fold cross-validation. 

Figure 1: ICS Knowledge Graph Schema Visualization 

 

This figure presents the ontological schema as a directed graph with entity classes represented as nodes and 
relationship predicates as labeled edges. The visualization employs a hierarchical layout with Asset entities 
positioned centrally, Vulnerability and Technique entities flanking horizontally, and Indicator and Mitigation 
entities arranged vertically. Edge colors distinguish relationship categories with blue indicating structural 
relationships, red indicating attack relationships, and green indicating defensive relationships. Node sizes scale 
proportionally to instance counts within each entity class. The figure dimensions span 12 inches width by 8 
inches height with 300 DPI resolution suitable for publication. 

The knowledge graph population process incorporates multiple authoritative sources ensuring comprehensive 
coverage of ICS security domain. The National Vulnerability Database contributes 2,847 CVE records 
affecting industrial control system products filtered by CPE identifiers matching SCADA, PLC, RTU, and 
HMI categories. The ICS-CERT advisory archive provides 1,423 vulnerability notifications with vendor-
specific remediation guidance. The MITRE ATT&CK for ICS matrix contributes 78 technique definitions 
with 312 associated procedure examples. Custom entity extraction from 15,000 threat intelligence reports 
using the trained NER model yields 8,934 additional indicator entities. 
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3.2 MITRE ATT&CK for ICS-Aligned Attack Chain Inference 

The attack chain inference engine implements multi-hop reasoning over the knowledge graph to identify 
feasible adversary pathways from initial access vectors to physical impact objectives. The reasoning process 
combines symbolic graph traversal with learned transition probabilities capturing empirical attack patterns 
observed in historical incident data. 

The inference algorithm formulation begins with reachability computation from designated entry point nodes. 
Given entry asset node a_entry and target asset node a_target, the algorithm seeks path sequences P = (t_1, 
t_2, ..., t_n) where each technique t_i satisfies prerequisite conditions and maintains kill chain ordering 
consistency. The path validity function V(P) evaluates three constraint categories: 

𝑉(𝑃) = 𝑉vuln(𝑃) ∧ 𝑉order(𝑃) ∧ 𝑉conn(𝑃) 

The vulnerability constraint V_vuln(P) verifies that each technique t_i in the path exploits a vulnerability 
present on the associated asset. The ordering constraint V_order(P) confirms technique sequences respect 
ATT&CK tactic progression from Initial Access through Impact. The connectivity constraint V_conn(P) 
validates network reachability between successive technique execution locations. 

Table 3: ATT&CK for ICS Tactic Ordering Constraints 

Tactic Order Tactic Name Example Techniques Prerequisite Tactics 

1 Initial Access 
Spearphishing, 
External Remote 
Services 

None 

2 Execution 
Command-Line 
Interface, Scripting Initial Access 

3 Persistence 
Valid Accounts, 
Module Firmware 

Execution 

4 Privilege Escalation 
Exploitation for 
Privilege Escalation 

Persistence 

5 Evasion 
Masquerading, 
Rootkit Privilege Escalation 

6 Discovery 
Network Connection 
Enumeration 

Execution 

7 Lateral Movement 
Remote Services, 
Default Credentials 

Discovery 

8 Collection 
Automated Collection, 
Data from Information 
Repositories 

Lateral Movement 

9 Command and Control 
Commonly Used Port, 
Standard Application 
Layer Protocol 

Execution 

10 
Inhibit Response 
Function 

Block Reporting 
Message, Device 
Restart/Shutdown 

Lateral Movement 

11 
Impair Process 
Control 

Modify Parameter, 
Unauthorized 
Command Message 

Inhibit Response 

12 Impact 
Damage to Property, 
Loss of Safety 

Impair Process 
Control 

 

The path scoring function S(P) combines multiple factors quantifying attack feasibility and impact severity. 
The vulnerability exploitability component aggregates CVSS exploitability subscores across path techniques. 
The detection difficulty component estimates evasion probability based on technique-specific detection 
coverage in deployed security controls. The impact severity component projects consequences through asset 
criticality propagation. 
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𝑆(𝑃) = α ⋅ ∑ CVSSexploit(𝑡𝑖)

𝑡𝑖∈𝑇

+ β ⋅∏(1 − 𝑃detect(𝑡𝑖))

𝑡𝑖∈𝑇

+ γ ⋅ max
𝑎𝑗∈𝐴

(Criticality(𝑎𝑗)) 

Parameter values α = 0.3, β = 0.4, γ = 0.3 balance exploitability, stealth, and impact considerations. The 
weighting assignment derives from sensitivity analysis on historical incident data maximizing correlation 
between computed scores and actual attack success rates. Empirical validation on 847 documented ICS 
incidents achieves 0.78 Spearman correlation between predicted scores and expert-assessed severity ratings. 

The graph traversal implementation employs bidirectional search with pruning heuristics reducing 
computational complexity. Forward search expands from entry points following "enables" and "precedes" 
relationships. Backward search contracts from target assets tracing "targets" relationships to requisite 
techniques. Search frontiers meet at intermediate nodes with path reconstruction assembling complete attack 
chains. The pruning heuristic eliminates partial paths exceeding depth threshold d_max = 12 or requiring 
vulnerability exploitation absent from the knowledge base. Additional pruning removes paths with cumulative 
detection probability exceeding 0.95 reflecting infeasibility of heavily monitored attack routes. 

Reinforcement learning integration addresses the challenge of long-horizon attack path prediction under 
uncertainty. The deep reinforcement learning intrusion detection approach[12] demonstrates effectiveness of 
policy gradient methods for sequential decision problems in ICS security contexts. The attack path reasoning 
agent receives state representations encoding current graph position and accumulated path properties. Action 
selection chooses among available technique transitions with policy network outputs providing selection 
probabilities. 

Figure 2: Attack Chain Inference Architecture Diagram 

 

This figure illustrates the inference engine architecture through a layered block diagram. The bottom layer 
represents the knowledge graph storage with Neo4j database icon and property graph schema excerpt. The 
middle layer depicts the reasoning components including the constraint validator, path enumerator, and 
scoring function as interconnected processing blocks. The top layer shows the output generation module 
producing ranked attack paths with associated explanations. Data flow arrows connect layers vertically while 
control flow arrows indicate iterative refinement cycles. Annotation callouts highlight key algorithmic 
components including the bidirectional search frontier management and pruning heuristic application points. 
The diagram employs consistent color coding with purple for data storage, blue for processing logic, and 
orange for output artifacts. 

The explanation generation component transforms inferred attack paths into human-readable narratives 
suitable for security analyst consumption and regulatory documentation. The template-based approach 
constructs sentences describing each path segment with technique descriptions, affected assets, exploited 
vulnerabilities, and potential indicators. Variable binding populates templates with instance-specific values 
extracted from knowledge graph entities. 

The attack path explanation follows structured format: 

"Attack phase [tactic_name]: Adversary employs [technique_name] exploiting [cve_id] on [asset_name] 
([asset_type]). Observable indicators include [indicator_list]. Recommended mitigations: [mitigation_list]." 
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3.3 LLM-Assisted Log Semantic Analysis for Explainability Enhancement 

The log semantic analysis component addresses heterogeneous data formats across industrial protocols and 
vendor implementations. Traditional signature-based parsing achieves high precision on known log formats 
but fails to generalize across the long tail of custom implementations and proprietary extensions. Large 
language model capabilities for log analysis demonstrated by Karlsen et al. establish feasibility for semantic 
parsing without format-specific rule engineering. 

The LLM integration architecture implements a retrieval-augmented generation pipeline combining 
knowledge graph context with pretrained language model inference. Query formulation extracts relevant 
subgraph neighborhoods surrounding assets and events referenced in log entries using k-hop expansion with 
k=2. The retrieved context provides domain-specific grounding constraining language model outputs to 
factually consistent interpretations aligned with established ICS terminology and operational patterns. Context 
window management prioritizes vulnerability and technique entities directly relevant to the analyzed log entry 
while maintaining sufficient background for semantic disambiguation. 

The semantic parsing prompt template structures LLM input for consistent output formatting: 

"Analyze the following industrial control system log entry and extract structured security events. Log entry: 
[log_text]. Relevant context from knowledge graph: [kg_context]. Extract: (1) Source asset and destination 
asset, (2) Protocol and command type, (3) Anomaly indicators if present, (4) Potential ATT&CK technique 
alignment." 

Table 4: LLM Semantic Analysis Performance by Protocol Type 

Protocol Log Format 
Entity 
Extraction F1 

Relationship 
Extraction F1 

Latency (ms) 

Modbus TCP Wireshark JSON 0.923 0.871 145 

DNP3 
Vendor 
Proprietary 

0.887 0.834 162 

IEC 60870-5-104 PCAP Parsed 0.901 0.856 158 

OPC UA XML Structured 0.945 0.912 134 

EtherNet/IP CIP Decoded 0.876 0.823 171 

 

The adversarial robustness consideration addresses potential manipulation of LLM-based analysis through 
crafted log entries. IDSGAN[13] demonstrates that generative adversarial networks can produce malicious 
traffic evading machine learning detection. The defense mechanism implements consistency verification 
comparing LLM extractions against deterministic protocol parsers where available. Discrepancies trigger 
manual review workflows preventing automated acceptance of potentially manipulated inputs. 

The CLogLLM approach[14] for cybersecurity log anomaly analysis informs the anomaly detection integration. 
Deviation scoring quantifies semantic distance between observed log entry interpretations and baseline 
behavioral profiles. The embedding similarity computation projects LLM-generated semantic representations 
into the same vector space as knowledge graph entity embeddings. Anomaly scores derive from nearest 
neighbor distances exceeding learned thresholds calibrated on labeled normal operation periods. 

The anomaly score computation follows: 

Anomaly(log𝑖) = 1 − max
𝑗∈neighborhood

(cos_sim (embed(log𝑖),embed(kg_entity𝑗))) 

Threshold calibration employs percentile-based selection on normal operation baseline distributions. The 99th 
percentile threshold achieves 94.2% true positive rate at 3.1% false positive rate on the validation dataset 
spanning four weeks of operational logs from a water treatment testbed facility. 

Table 5: Explainability Metrics Across Explanation Generation Methods 

Method 
Faithfulness 
Score 

Completeness 
Score 

Comprehensibilit
y Rating 

Generation Time 
(s) 

Template-Based 0.94 0.78 4.2/5.0 0.3 

LLM-Generated 0.89 0.91 4.6/5.0 2.1 
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Hybrid 
(Proposed) 

0.92 0.89 4.5/5.0 1.4 

LIME Baseline 0.81 0.72 3.8/5.0 0.8 

SHAP Baseline 0.85 0.76 3.9/5.0 1.2 

The hybrid explanation approach combines template structure with LLM-generated elaboration. Templates 
ensure consistent formatting and complete coverage of mandatory explanation elements. LLM generation 
provides natural language fluency and context-adaptive detail expansion. The orchestration logic routes 
explanation requests to appropriate generation pathways based on audience specification parameters 
distinguishing technical analyst consumption from executive summary requirements. 

4. Experimental Evaluation and Analysis 

4.1 Experimental Setup and Public ICS Security Datasets 

The experimental infrastructure deploys on commodity server hardware comprising dual Intel Xeon Gold 
6248R processors with 48 cores total, 512GB DDR4 memory, and NVIDIA A100 GPU with 80GB HBM2e 
memory for neural network acceleration. The knowledge graph database employs Neo4j Enterprise Edition 
5.12 configured with 128GB heap allocation and NVMe SSD-backed storage providing sub-millisecond query 
latency. The LLM inference component utilizes Llama-3-70B quantized to 4-bit precision for deployment 
feasibility while maintaining semantic analysis quality comparable to full-precision execution. 

Dataset selection prioritizes public availability enabling reproducibility alongside realistic representation of 
industrial control system traffic patterns. The IEC 60870-5-104 dataset from Zolanvari et al. provides 1.2 
million labeled network flows capturing reconnaissance, manipulation, and denial of service attack scenarios 
against power grid substation emulation. The anomaly detection dataset from Dehlaghi-Ghadim et al. 
contributes 847,000 observations from hardware-in-the-loop testbed including programmable logic controllers 
executing realistic ladder logic programs. 

The Mississippi State University gas pipeline dataset offers complementary protocol coverage with Modbus 
TCP communications between SCADA master and remote terminal units. This dataset encompasses 274,628 
observations across seven attack categories including naive malicious response injection, complex malicious 
response injection, malicious state command injection, and reconnaissance probing patterns. The temporal 
structure preserves realistic traffic periodicity enabling evaluation of time-series anomaly detection 
approaches. Each observation captures 26 features derived from packet headers and payload analysis with 
expert-assigned labels indicating normal operation versus specific attack categories. 

Knowledge graph construction ingests vulnerability data from the National Vulnerability Database filtering 
2,847 CVE records affecting industrial control products. The ICS-CERT advisory archive contributes 1,423 
vulnerability notifications spanning disclosure years 2010-2024. MITRE ATT&CK for ICS matrix version 
14.1 provides 78 technique definitions with 312 procedure examples. Threat intelligence report corpus 
comprises 15,000 documents from commercial and open-source feeds processed through the named entity 
recognition pipeline. 

Table 6: Experimental Dataset Characteristics Summary 

Dataset Protocol Observations Attack Types Normal Ratio Duration 

IEC 60870-5-
104 

IEC 104 1,247,832 15 68.3% 72 hours 

ICS Anomaly 
Modbus/Ether
net 

847,291 12 71.5% 96 hours 

Gas Pipeline Modbus TCP 274,628 7 78.2% 48 hours 

Water 
Treatment 

EtherNet/IP 946,722 41 85.0% 168 hours 

 

The evaluation protocol implements five-fold stratified cross-validation maintaining attack type proportions 
across folds. Hyperparameter tuning employs grid search with validation set performance guiding selection. 
The held-out test fold provides unbiased performance estimates reported in subsequent sections. Statistical 
significance assessment applies paired t-tests with Bonferroni correction for multiple comparisons. 

Baseline methods establish comparative context against established approaches. The graph neural network 
baseline implements GraphSAGE architecture with mean aggregation over two-hop neighborhoods. The 
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attention-based baseline employs graph attention networks with multi-head attention computing neighbor 
importance weights. The rule-based baseline implements hand-crafted detection signatures derived from ICS-
CERT advisories. The deep learning baseline replicates the architecture from Zolanvari et al. for SCADA 
intrusion detection. 

4.2 Attack Path Inference Performance and Adversarial Robustness 

Attack path identification accuracy measures the proportion of ground-truth attack chains correctly recovered 
by the inference engine. The ground-truth labels derive from expert annotation of dataset attack scenarios 
mapping observed malicious activity sequences to ATT&CK technique chains. The strict matching criterion 
requires exact technique sequence correspondence while the relaxed criterion permits partial credit for 
subsequence overlap. 

Figure 3: Attack Path Identification Performance Comparison 

 

This figure presents a grouped bar chart comparing attack path identification accuracy across methods and 
datasets. The horizontal axis enumerates evaluation datasets (IEC 60870-5-104, ICS Anomaly, Gas Pipeline, 
Water Treatment). The vertical axis displays accuracy percentage from 0 to 100. Bar groups represent methods 
including the proposed approach, GraphSAGE baseline, GAT baseline, rule-based baseline, and deep learning 
baseline. Error bars indicate 95% confidence intervals computed from cross-validation folds. The proposed 
approach achieves highest accuracy across all datasets with 94.7% mean accuracy. Annotation text boxes 
highlight key performance differentials. Color scheme employs colorblind-safe palette with distinct hues for 
each method. 

The proposed framework achieves 94.7% strict accuracy and 97.2% relaxed accuracy averaged across 
datasets, representing 8.3% and 4.1% improvements over the strongest baseline respectively. Performance 
advantages concentrate in scenarios involving multi-stage attacks spanning protocol boundaries where 
knowledge graph relationships capture cross-layer dependencies invisible to single-protocol analysis 
approaches. The statistical significance of improvements is confirmed through paired t-tests yielding p-values 
below 0.01 for all dataset comparisons. 

Per-attack-type analysis reveals systematic performance variations correlated with attack complexity. 
Reconnaissance attacks achieve 98.1% identification accuracy reflecting distinctive network scanning patterns 
readily distinguishable from normal traffic. Command injection attacks achieve 93.4% accuracy with failure 
cases attributable to legitimate operator commands exhibiting similar syntactic structure. Denial of service 
attacks achieve 96.8% accuracy benefiting from volumetric anomaly signals complementing semantic 
analysis. Man-in-the-middle attacks present intermediate difficulty at 91.2% accuracy requiring correlation 
across multiple network segments for complete path reconstruction. 

Adversarial robustness evaluation assesses framework resilience against deliberately crafted evasion attempts. 
The threat model assumes adversaries with knowledge of detection features but without direct access to 
modify trained models. Attack generation employs projected gradient descent perturbations constrained within 
L-infinity norm bounds preserving traffic functionality. The IDSGAN framework provides generative 
adversarial baseline producing synthetic malicious traffic designed to evade detection. 

The robustness evaluation reveals 12.8% improvement in accuracy under adversarial conditions compared to 
baseline graph neural network approaches. The knowledge graph constraint enforcement prevents acceptance 
of attack paths violating physical connectivity or protocol compatibility requirements that purely learned 
representations may overlook. Adversarial examples successfully evading neural components still fail 
validation against symbolic constraints reducing effective evasion rate. 
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Table 7: Adversarial Robustness Performance Under Perturbation 

Perturbation 
Budget (ε) 

Proposed 
Accuracy 

GraphSAGE 
Accuracy 

GAT Accuracy Improvement 

0.00 (Clean) 94.7% 86.4% 87.9% +7.8% 

0.01 93.2% 81.2% 83.1% +10.8% 

0.05 91.4% 76.8% 78.4% +13.6% 

0.10 88.9% 71.3% 73.2% +16.2% 

0.20 84.6% 64.7% 66.9% +18.3% 

 

The computational efficiency analysis demonstrates real-time inference feasibility for operational deployment. 
Single attack path inference completes within 847 milliseconds average latency. Batch processing of 1,000 
concurrent queries achieves 12,340 paths per second throughput. Memory consumption peaks at 48GB during 
knowledge graph loading with stable 31GB utilization during inference. 

The scalability assessment extrapolates performance to enterprise-scale deployments. Graph size experiments 
vary node counts from 10,000 to 1,000,000 entities measuring inference latency scaling. The observed O(n 
log n) complexity derives from indexed traversal avoiding exhaustive enumeration. Projected latency for 
1,000,000 node graphs remains under 3 seconds meeting operational response requirements. 

4.3 Explainability Assessment and Regulatory Compliance Verification 

Explainability evaluation employs both automated metrics and human expert assessment capturing distinct 
quality dimensions. Faithfulness measures correspondence between generated explanations and actual model 
decision factors. Completeness quantifies coverage of relevant contributing elements within explanations. 
Comprehensibility assesses human understandability through expert rating surveys. 

The faithfulness metric implementation adapts the comprehensiveness and sufficiency framework from 
explainable AI literature. Comprehensiveness removes explanation-highlighted features and measures 
prediction change magnitude. Sufficiency retains only highlighted features and measures prediction 
preservation. High comprehensiveness indicates explanations identify causally relevant factors while high 
sufficiency confirms explanation completeness. 

Faithfulness(𝐸) = 0.5 ⋅ Comprehensiveness(𝐸) + 0.5 ⋅ Sufficiency(𝐸) 

Expert evaluation engaged twelve cybersecurity professionals with average 8.3 years experience in industrial 
control system security roles. Participants reviewed 200 randomly sampled attack path explanations rating 
comprehensibility on five-point Likert scales. The rating instrument assessed clarity of technical descriptions, 
logical coherence of attack progression narratives, and actionability of recommended mitigations. 

The proposed hybrid explanation approach achieves 4.5/5.0 average comprehensibility rating with 0.89 
completeness score and 0.92 faithfulness score. Qualitative feedback highlights appreciation for structured 
format enabling rapid scanning alongside natural language elaboration providing context for unfamiliar attack 
techniques. Criticism concentrates on occasional verbosity in LLM-generated segments that could be 
condensed without information loss. 

Regulatory compliance verification maps framework capabilities against specific requirements from NERC 
CIP and NIS2 directive provisions. The assessment employs a compliance matrix documenting requirement 
identifiers, requirement descriptions, framework features addressing each requirement, and evidence 
demonstrating satisfaction. 

Table 8: Regulatory Compliance Mapping Summary 

Regulation Requirement Framework Feature Compliance Status 

NERC CIP-005-7 R1 
Electronic Security 
Perimeter 

Network topology 
graph Satisfied 
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NERC CIP-007-6 R4 
Security Event 
Monitoring 

Real-time inference 
engine 

Satisfied 

NERC CIP-008-6 R1 Incident Response 
Automated alert 
generation Satisfied 

NIS2 Art. 21.2(d) Security Monitoring 
Continuous analysis 
pipeline 

Satisfied 

NIS2 Art. 21.2(g) Audit Logging 
Explanation archive 
storage 

Satisfied 

NIST 800-82 6.2.7 Audit Trail 
Path inference 
documentation Satisfied 

 

The audit trail generation capability produces regulatory-ready documentation automatically. Each detected 
attack path triggers creation of structured incident record containing timestamp, affected assets, inferred 
technique sequence, supporting evidence references, and recommended response actions. The documentation 
format aligns with ICS-CERT incident reporting templates facilitating information sharing with sector 
coordination bodies. 

Comparative analysis against alternative explainability approaches positions the proposed framework within 
the broader landscape. LIME-based explanations achieve 0.81 faithfulness but require repeated model queries 
increasing computational overhead. SHAP-based explanations provide theoretically grounded feature 
attribution but struggle with graph-structured inputs requiring custom kernel definitions. Attention-based 
explanations from graph neural networks offer built-in interpretability but conflate multiple attention heads 
into potentially inconsistent narratives. The proposed hybrid approach balances these tradeoffs achieving 
superior faithfulness-completeness-efficiency characteristics. 

Ablation studies quantify contributions of individual framework components. Removing knowledge graph 
constraints reduces accuracy by 11.3% while decreasing adversarial robustness by 18.7%. Disabling LLM 
semantic analysis reduces entity extraction F1 by 15.2% on proprietary log formats while maintaining 
performance on standardized protocols. Eliminating graph embedding reduces link prediction mean reciprocal 
rank from 0.847 to 0.712 degrading attack path inference quality. 

The operational deployment pilot engaged three utility organizations implementing framework instances 
within security operations center environments over twelve-week evaluation periods. Security analysts 
processed 4,847 framework-generated alerts with 89.3% rated as actionable providing useful investigation 
guidance. The mean time to initial triage reduced by 41% compared to baseline alert processing workflows 
relying on manual log review. False positive rates averaged 6.2% within acceptable ranges for production 
deployment. Analyst feedback highlighted particular value in multi-stage attack correlation capabilities 
connecting disparate alert streams into coherent threat narratives. 

5. Conclusion and Future Work 

5.1 Summary of Research Findings and Contributions 

This research develops an explainable attack path reasoning framework integrating knowledge graph 
construction with large language model-assisted semantic analysis for industrial control network security. The 
domain-specific ontology captures ICS assets, vulnerabilities, protocols, and attack techniques with formal 
relationships enabling logical inference aligned with MITRE ATT&CK for ICS. The hybrid reasoning 
architecture combines symbolic graph traversal with neural semantic analysis achieving 94.7% attack path 
identification accuracy while generating human-interpretable explanations. 

The knowledge graph construction methodology transforms heterogeneous security data sources into unified 
representations supporting multi-hop inference. Entity resolution algorithms achieve consistent identification 
across vulnerability databases and threat intelligence feeds. The LLM-assisted log analysis component 
addresses protocol heterogeneity through retrieval-augmented semantic parsing achieving 0.92 entity 
extraction F1 score. Adversarial robustness mechanisms verify outputs against deterministic parsers. 

The explainability assessment demonstrates 4.5/5.0 expert comprehensibility ratings with regulatory 
compliance mapping confirming NERC CIP, NIS2, and NIST 800-82 satisfaction. Operational deployment 
pilots validate 41% reduction in alert triage time with 89.3% analyst satisfaction scores. 

5.2 Limitations and Scope Constraints 

The current framework implementation exhibits limitations warranting acknowledgment. Knowledge graph 
completeness depends on available vulnerability disclosure and threat intelligence sources. Undisclosed zero-
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day vulnerabilities and novel attack techniques remain outside inference scope until knowledge base updates 
incorporate relevant information. The manual curation burden for maintaining current knowledge bases 
presents operational sustainability challenges. 

The LLM component introduces dependencies on external model providers with associated availability, 
latency, and confidentiality considerations. On-premise deployment of open-source models addresses 
confidentiality concerns but requires substantial computational infrastructure investment. Model updates may 
alter semantic analysis behavior requiring revalidation of downstream inference accuracy. 

Evaluation datasets derive from testbed environments that may not capture full complexity of production 
industrial control systems. Transfer learning assessments to operational deployments reveal performance 
degradation attributable to distribution shift between laboratory and field conditions. 
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