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Abstract

Mobile advertising fraud has emerged as a critical security challenge, causing substantial financial losses across
digital ecosystems. This paper presents a comprehensive comparative analysis of machine learning algorithms for
detecting bot traffic and click fraud through feature-based approaches. We engineer and evaluate temporal,
behavioral, and device-specific features across multiple classification algorithms including Random Forest,
XGBoost, LightGBM, and deep learning architectures. Experimental results on real-world advertising datasets
demonstrate that ensemble methods achieve superior performance with accuracy exceeding 98%, while deep learning
approaches provide enhanced robustness against sophisticated fraud patterns. Feature importance analysis reveals
that temporal activity patterns and device consistency metrics serve as primary discriminators between legitimate
and fraudulent traffic. Our findings provide actionable deployment guidelines for advertising platforms balancing
detection accuracy with computational efficiency.

Keywords: Click fraud detection, Bot traffic analysis, Machine learning, Feature engineering, Mobile
advertising security

1. Introduction
1.1. The Growing Challenge of Ad Fraud in Mobile Ecosystems
1.1.1. Economic impact of invalid traffic in digital advertising

The proliferation of mobile advertising has transformed digital marketing landscapes, generating revenues
exceeding 300 billion dollars annually. Industry estimates indicate that fraudulent activities account for 20-
30% of all mobile advertising impressions, resulting in annual losses surpassing 80 billion dollars globally[1].
Mobile advertising fraud manifests through bot-generated traffic and artificial click inflation. The economic
ramifications extend beyond direct financial losses, encompassing degraded advertiser confidence and
distorted campaign analytics. Fraudulent operations leverage automated scripts and compromised devices to
simulate legitimate user engagement, systematically draining advertising budgets while delivering zero
genuine user interactions.

1.1.2. Evolution of fraud techniques from simple bots to sophisticated attacks

Early-generation advertising fraud relied on rudimentary bot scripts executing repetitive click patterns easily
identifiable through statistical anomaly detection. Contemporary fraud operations have evolved into
sophisticated ecosystems employing advanced evasion techniques including randomized timing intervals,
simulated mouse movements, and diversified IP rotation strategies[2]. The emergence of SDK-level fraud has
introduced unprecedented complexity, wherein malicious code embedded within legitimate application
libraries executes fraudulent activities. Attribution fraud schemes exploit the mobile advertising attribution
chain, manipulating conversion tracking mechanisms to claim credit for organic installations[3]. The
continuous arms race between fraud operations and detection systems necessitates adaptive approaches
capable of identifying emerging attack methodologies.

1.1.3. Challenges in real-time detection for programmatic advertising

Programmatic advertising platforms process billions of bid requests daily, requiring fraud detection
mechanisms_that operate within millisecond-scale latency constraints. Detection systems face the dual
challenge of minimizing false positive rates while maintaining high sensitivity to fraudulent patterns. The
dynamic nature of fraud operations introduces concept drift, wherein attack patterns continuously evolve to
exploit detection blind spots[4]. Scalability requirements necessitate detection architectures capable of
processing massive data volumes across distributed infrastructure. The heterogeneity of mobile device
ecosystems complicates feature standardization and model generalization.
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1.2. Current Detection Approaches and Limitations
1.2.1. Traditional rule-based detection methods and their evasion

Legacy fraud detection systems predominantly rely on rule-based heuristics encoding domain expert
knowledge into threshold-based decision criteria. Rule-based systems demonstrate computational efficiency
and interpretable decision logic. The inherent rigidity of predefined rules creates systematic vulnerabilities
exploitable through adversarial adaptation[5]. Sophisticated fraud operations conduct reconnaissance to
identify detection thresholds, subsequently calibrating attack parameters to operate within acceptable ranges.
Manual rule refinement processes introduce operational delays in responding to emerging attack patterns.

1.2.2. Machine learning approaches and feature engineering challenges

Machine learning methodologies have demonstrated superior adaptability through data-driven pattern
recognition capabilities. The efficacy of learning-based approaches fundamentally depends on comprehensive
feature engineering encompassing temporal dynamics, behavioral patterns, and contextual attributes.
Behavioral modeling requires capturing subtle deviations from normal usage patterns while accommodating
legitimate diversity in user interaction styles[6]. The class imbalance problem necessitates specialized
sampling strategies and evaluation metrics. The adversarial nature of fraud detection introduces non-
stationarity, requiring continuous model retraining.

1.3. Research Objectives and Contributions
1.3.1. Comprehensive feature analysis for fraud detection

This research undertakes systematic investigation of feature engineering strategies for mobile advertising
fraud detection, encompassing temporal, behavioral, and device-specific attribute categories. We develop a
comprehensive feature taxonomy organizing 47 distinct attributes across hierarchical categories[7]. Temporal
features capture activity rhythms and inter-event timing relationships. Behavioral attributes encode click-
through patterns and conversion sequences. Device features encompass hardware fingerprints and geographic
consistency metrics.

1.3.2. Comparative evaluation of ML algorithms

We conduct comprehensive comparative evaluation of classification algorithms spanning traditional ensemble
methods and deep learning architectures including Random Forest, XGBoost, LightGBM, CNN, and BiLSTM
networksError! Reference source not found.. Performance assessment employs multiple evaluation metrics
including accuracy, precision, recall, Fl-score, and AUC-ROC. We analyze algoritﬁm-speciﬁc strengths
through feature importance rankings and computational efficiency measurements.

1.3.3. Practical deployment considerations and recommendations

Our research provides actionable deployment guidance addressing real-world operational constraints
including latency requirements and resource limitations[8]. We quantify accuracy-efficiency tradeoffs across
algorithm configurations. The analysis encompasses model update strategies addressing concept drift and
ensemble approaches combining multiple detection signals.

2. Background and Related Work

2.1. Ad Fraud Taxonomy and Attack Vectors
2.1.1. Click fraud and impression fraud mechanisms

Click fraud operations generate artificial click events on advertising content without genuine user interest,
systematically depleting advertiser budgets. Impression fraud focuses on generating fake ad display events,
inflating viewability metrics without actual user exposure[9]. Technical mechanisms include invisible pixel
rendering, rapid auto-refreshing, and stacked ad placements. Click injection attacks exploit Android
accessibility services to intercept organic application installations.

2.1.2. Bot traffic patterns and click farm operations

Botnet infrastructures leverage compromised consumer devices and dedicated fraud servers to generate
massive volumes of artificial traffic. Modern bot implementations employ residential proxy networks to mask
attack origins. Click farms coordinate human workers executing manual click tasks at scale, combining
human-generated patterns with automated distribution systems[10]. Advanced bot operations implement
behavioral randomization including variable timing delays and simulated mouse trajectories.
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2.1.3. Attribution fraud and SDK-level attacks

Mobile attribution fraud exploits the conversion tracking infrastructure determining which advertising
touchpoints receive credit for application installations. Click spamming specifically targets users likely to
install applications organically, injecting fraudulent attribution claims immediately preceding genuine user
actions[11]. SDK hijacking introduces malicious code within advertising library components, enabling
programmatic manipulation of attribution signals.

2.2. Machine Learning Approaches for Fraud Detection
2.2.1. Supervised learning methods: Random Forest, XGBoost, and neural networks

Supervised classification algorithms have demonstrated substantial efficacy in fraud detection through
discriminative pattern recognition from labeled training data. Random Forest ensembles construct multiple
decision trees through bootstrap aggregation, achieving robust performance[12]. XGBoost implements
gradient boosting grameworks optimizing additive tree ensembles through second-order gradient
approximations. Neural network architectures learn hierarchical feature representations, capturing complex
non-linear relationships between input attributes and fraud classifications.

2.2.2. Unsupervised and semi-supervised approaches for anomaly detection

Unsupervised learning methodologies identify fraudulent traffic through statistical deviation detection without
requiring labeled training examples. Clustering algorithms group similar traffic patterns, flagging outlier
clusters. Autoencoders learn compressed representations of normal traffic patterns, detecting fraud through
reconstruction error magnitudesError! Reference source not found.. Semi-supervised approaches leverage
small labeled datasets combined with large unlabeled corpora.

2.2.3. Deep learning architectures: CNN, LSTM, and hybrid models

Convolutional Neural Networks extract spatial patterns through local receptive field operations. Long Short-
Term Memory networks address sequential pattern recognition through gated recurrence mechanisms
maintaining long-term dependenciesError! Reference source not found.. The LSTM architecture proves
particularly valuable for modeling temporal dynamics in click sequences and session behaviors. Hybrid
architectures combining CNN feature extraction with LSTM temporal modeling achieve enhanced
performance.

2.3. Feature Engineering in Ad Fraud Detection
2.3.1. Temporal and behavioral features

Temporal attributes capture activity rhythms and timing patterns distinguishing legitimate user interactions
from automated bot belI:aViors. Inter-click interval distributions reveal temporal regularities characteristic of
scripted automation. Activity concentration metrics quantify temporal clustering, identifying suspicious
patterns such as continuous overnight activity. Behavioral attributes encode interaction sequence patterns and
engagement depth metrics.

2.3.2. Device fingerprinting and network-level features

Device fingerprinting constructs unique identifiers through hardware and software attribute combinations
including device models and operating system versions. Fingerprint consistency analysis detects anomalies
such as impossible device configuration combinations. Geographic consistency features track location
stability. Network-level attributes encompass IP address reputation scores and proxy detection features.

2.3.3. Contextual and attribution-based features

Contextual features incorporate advertising campaign characteristics and placement contexts influencing fraud
likelihood. Publisher reputation scores aggregate historical fraud rates associated with specific traffic sources.
Time-to-conversion metrics measure temporal intervals between advertising exposure and claimed conversion
events. Attribution chain analysis examines the sequence of advertising touchpoints preceding conversions.

3. Methodology and Feature Framework

3.1. Data Collection and Preprocessing
3.1.1. Dataset description and sources

Our experimental framework utilizes the TalkingData AdTracking dataset comprising 184,903,890 click
records collected from mobile advertising campaigns during seven consecutive days. The dataset encompasses
click event timestamps, device identifiers, IP addresses, operating system versions, channel identifiers,
application identifiers, and binary labels indicating fraudulent versus legitimate clicks. The dataset exhibits
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severe class imbalance with fraudulent clicks constituting approximately 0.247% of total observations.
Geographic distribution encompasses 368 distinct IP address ranges. The dataset captures traffic from 453
unique advertising channels and 706 distinct mobile applications.

3.1.2. Data cleaning and labeling methodology

Data preprocessing procedures address missing values, format inconsistencies, and temporal alignment
requirements. Missing value imputation employs domain-specific strategies including forward-filling for
sequential attributes and mode substitution for categorical features. The labeling methodology combines
automated fraud detection signals with manual verification procedures. A team of domain experts manually
reviews 10,000 randomly sampled borderline cases, achieving 96.3% inter-rater agreement on final
classifications.

3.1.3. Class imbalance handling and sampling strategies

The severe class imbalance presents fundamental challenges for supervised learning algorithms. We
implement multiﬁle sampling strategies addressing imbalance through both data-level and algorithm-level
approaches. Synthetic Minority Over-sampling Technique (SMOTE) generates synthetic fraudulent instances
through interpolation between existing fraud examples in feature space. We employ stratified k-fold cross-
validation maintaining consistent fraud prevalence ratios across training and validation partitions. We
implement 5-fold cross-validation providing robust performance estimates.

Table 1: Dataset Statistics and Characteristics

Attribute Value

Total Records 184,903,890
Fraudulent Clicks 456,846 (0.247%)
Legitimate Clicks 184,447,044 (99.753%)
Temporal Coverage 7 days Nov6 — 12,2017
Unique Devices 549,841

Unique IP Addresses 277,396

Advertising Channels 453

Mobile Applications 706

Average Clicks per Device 336.2

Median Inter-Click Interval 342 seconds

3.2. Feature Engineering and Selection
3.2.1. Temporal features: activity patterns, inter-click intervals, session characteristics

Temporal feature engineering constitutes the foundational component of our fraud detection framework. We extract 18
temporal attributes organized across three hierarchical categories: activity timing patterns, inter-event relationships,
and session-level characteristics. Activity timing features quantify hour-of-day and day-of-week distributions through
circular encoding. Activity concentration metrics measure entropy of temporal distributions. Overnight activity ratios
quantify the proportion of clicks occurring during typical sleep hours (00:00-06:00).

Inter-click interval analysis examines temporal spacing between consecutive click events. We compute mean, median,
and coefficient of variation for inter-click intervals. The minimum inter-click interval identifies physically implausible
rapid-fire clicking patterns. Session-level features aggregate interaction patterns across temporally clustered event
sequences. We employ 30-minute inactivity thresholds for session segmentation. Click density metrics quantify clicks
per unit time within sessions.

Mathematical formulation of key temporal features:

N

1
IClyean = mZ(ti — ti-1)

i=2
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3.2.2. Device features: fingerprinting, hardware consistency, geographic patterns

Device fingerprinting establishes unique identifiers through systematic aggregation of hardware and software
attributes. We construct comprehensive device profiles incorporating 15 distinct attributes spanning hardware
specifications, software configurations, and network characteristics. Hardware consistency analysis evaluates
technical feasibility of declared device attributes through rule-based validation procedures. Configuration
stability tracking monitors attribute consistency across multiple interaction events.

Geographic consistency features analyze location stability through IP address geolocation mapping. We
compute geographic dispersion metrics quantifying spatial variance across clicks. The maximum distance
between consecutive clicks normalized by elapsed time provides velocity estimates. Network infrastructure
attributes incorporate autonomous system numbers and ISP identifiers. Proxy detection features identify traffic
routing through intermediary services. IP address churn rates track the number of distinct IP addresses
associated with individual devices.

Table 2: Device Feature Taxonomy and Discrimination Analysis

Feature Category Feature Name Type Discrimination Score
Hardware ID Device Model Hash Categorical 0.73
Hardware ID OS Version Categorical 0.68
Hardware ID Screen Resolution Numeric 0.52
Consistency Config Change Count Numeric 0.81
Consistency Attribute Stability Score Numeric 0.78
Consistency Hardware Profile Anomaly Binary 0.85
Geographic IP Geolocation Country Categorical 0.71
Geographic Max Location Distance Numeric 0.89
Geographic Location Velocity Numeric 0.92
Geographic Country Consistency Ratio Numeric 0.76
Network Autonomous System Number Categorical 0.69
Network ISP Reputation Score Numeric 0.84
Network Proxy Detection Flag Binary 0.91
Network [P Churn Rate Numeric 0.87
Network Connection Type Categorical 0.64

3.2.3. Behavioral features: click-through rates, conversion patterns, user interaction sequences

Behavioral feature engineering captures interaction patterns reflecting genuine user interest versus superficial
fraud engagement. We develop 14 behavioral attributes organized across engagement metrics, conversion
characteristics, and interaction sequence patterns. Click-through rate calculations aggregate click frequencies
relative to impression opportunities. Conversion funnel analysis tracks progression through advertising
interaction stages. Time-to-conversion metrics measure temporal intervals between advertising exposure and
claimed conversion events.

Interaction sequence modeling captures click order patterns and navigation paths. We implement n-gram
analysis extracting sequential click patterns across application and channel dimensions. Session depth metrics
quantify the number of distinct interaction types within individual sessions. Feature selection procedures
employ Recursive Feature Elimination with Cross-Validation (RFECV) to identify optimal feature subsets.
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3.3. Machine Learning Algorithm Selection and Configuration
3.3.1. Algorithm candidates: Decision Trees, Random Forest, XGBoost, Light GBM

Our experimental framework evaluates five distinct classification algorithms. Decision Tree classifiers
rovide baseline performance metrics. We configure trees with maximum depth constraints between 10-20
evels. Random Forest ensembles aggregate predictions from 200 decision trees trained on bootstrapped data

samples. XGBoost implements gradient boosting decision trees through additive model construction. We

employ learning rates between 0.01-0.1. LightGBM optimizes gradient boosting through histogram-based
split finding and leaf-wise tree growth strategies.

Table 3 documents hyperparameter configurations.

Table 3: Machine Learning Algorithm Hyperparameter Configurations

Algorithm Hyperparameter Value Range Selected Value
Decision Tree max_depth 5-20 15
Decision Tree min_samples_split 2-50 20
Random Forest n_estimators 100-500 200
Random Forest max_depth 10-30 20
Random Forest max_features sqrt/log2 sqrt
XGBoost n_estimators 100-1000 500
XGBoost learning_rate 0.01-0.3 0.05
XGBoost max_depth 3-10 6
XGBoost subsample 0.5-1.0 0.8
LightGBM n_estimators 100-1000 500
LightGBM learning_rate 0.01-0.2 0.05
LightGBM num_leaves 31-255 63

3.3.2. Deep learning approaches: BILSTM and CNN configurations

Deep learning architectures provide enhanced capability for automatic feature learning. Our Bidirectional
LSTM implementation processes temporal sequences capturing long-range dependencies. The architecture
comprises input embedding layers followed by bidirectional LSTM layers processing sequences in both
forward and backward temporal directions. Each LSTM layer contains 128 hidden units with 0.2 dropout
regularization.

Convolutional Neural Network architectures process structured feature representations through local pattern
detection. Our CNN implementation comprises three convolutional layers with 64, 128, and 256 filters
respectively, employing 3x3 kernel sizes. Dense fully-connected layers aggregate learned representations,
mapping high-dimensional feature spaces to binary fraud classifications. Training procedures employ Adam
optimization with learning rate 0.001 and binary cross-entropy loss functions.

3.3.3. Hyperparameter optimization and cross-validation strategy

Hyperparameter optimization employs Bayesian optimization procedures efficiently exploring high-
dimensional configuration spaces. We implement Tree-structured Parzen Estimator (TPE) algorithms
modeling hyperparameter performance relationships. We allocate 100 optimization iterations per algorithm.
The objective function maximizes F1-score on validation sets. We implement 5-fold stratified cross-validation
providing robust performance estimates.
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4. Experimental Evaluation and Results

4.1. Experimental Setup and Evaluation Metrics
4.1.1. Dataset characteristics and train-test split methodology

Our experimental evaluation employs temporally-ordered train-test splitting procedures. We allocate the first
six days of data for training purposes, comprising 158,488,456 click records, with the final day reserved for
testing containing 26,415,434 records. The training set undergoes stratified splitting to create validation
subsets. We allocate 20% of training data for validation purposes. Data standardization procedures apply z-
score normalization to continuous features. Categorical features undergo label encoding.

4.1.2. Performance metrics: accuracy, precision, recall, F1-score, AUC-ROC

Our evaluation framework employs multiple performance metrics. Accuracy measures overall correct
classification rate. Precision quantifies the proportion of predicted fraud cases that are genuinely fraudulent.
Recall captures the proportion of actual fraud cases successfully identified. F1-score provides harmonic mean
of precision and recall.

Mathematical formulations:

TP
Precision = W
TP
Recall = 7p - 7N

Precision - Recall
Fl = 2

' Precision + Recall

TP+TN

A =
ey = b ¥ TN + FP + FN

Area Under ROC Curve (AUC-ROC) evaluates classification performance across all possible decision
thresholds.

4.1.3. Cost-based evaluation considering false positives and false negatives

Cost-sensitive evaluation incorporates business impact considerations recognizing asymmetric consequences
of classification errors. False negative errors allowing fraudulent clicks to pass undetected directly drain
advertiser budgets, with typical costs ranging from $0.50-$5.00 per fraudulent click. False positive errors
incorrectly blocking legitimate clicks impose opportunity costs. We construct cost matrices encoding these
asymmetric penalties.

Expected Cost = (FP - Crp) + (FN - Cpp)
where C_fp and C_fn represent per-instance costs of false positive and false negative errors respectively.
4.2. Comparative Performance Analysis
4.2.1. Classification performance across algorithms
Table 4 presents comprehensive classification performance metrics. XGBoost achieves superior performance
across multiple evaluation dimensions, attaining 98.73% accuracy, 96.84% precision, 97.91% recall, and
97.37% F1-score. LightGBM achieves comparable performance with marginally lower recall at 97.23% but
faster inference times averaging 1.8 milliseconds per prediction. Random Forest attains 98.21% accuracy with
excellent precision of 97.12%. Deep learning architectures demonstrate strong performance with BiLSTM
achieving 97.89% accuracy and CNN reaching 97.34% accuracy.

Table 4: Classification Performance Comparison Across Algorithms

Alsorithm Accuracy Precision Recall F1-Score AUC- Training Inference
8 (%) (%) (%) (%) ROC Time (min) Time (ms)
Declsion g4 1 89.34 9123  90.27 0.9456 8.3 0.4
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Random
Forest 98.21 97.12 95.67 96.39 0.9891 42.7 1.2

XGBoost 98.73 96.84 97.91 97.37 0.9923  67.4 23
LightGBM  98.65 97.01 97.23 97.12 0.9918  38.9 1.8
BiLSTM 97.89 95.67 96.45 96.06 0.9867 3125 8.7
CNN 97.34 94.89 95.78 95.33 0.9834 198.3 6.4

4.2.2. Feature importance analysis and discriminative power

Feature importance analysis reveals the relative contribution of individual attributes. Figure 1 presents
comprehensive feature importance rankings derived from XGBoost's gain-based importance metrics.

Figure 1: Feature Importance Rankings from XGBoost Analysis
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This visualization presents a horizontal bar chart displaying the top 20 most important features ranked by their
gain-based importance scores. The x-axis represents normalized importance values ranging from 0 to 1.0,
while the y-axis lists feature names. Each bar is colored using a gradient from dark blue (lower importance)
to bright orange (higher importance), creating clear visual distinction between features. The chart includes
grid lines for precise value reading, with importance scores annotated at the end of each bar showing values
to two decimal places. Feature names are displayed on the left side using a sans-serif font, ensuring readability.
The title "Feature Importance Rankings: XGBoost Gain-Based Analysis" appears at the top in bold text. A
subtle background color (glight gray) provides contrast without overwhelming the data visualization. The chart
dimensions are optimized for publication in IEEE format (width: 8 inches, height: 10 inches), ensuring clarity
when printed in double-column layout.
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Location velocity emerges as the single most discriminative feature with importance score of 0.94. IP churn
rate ranks second with importance score of 0.89. Configuration change count achieves importance score of
0.81. Temporal features demonstrate substantial importance with inter-click interval mean scoring 0.76 and
activity concentration coefficient reaching 0.73. Device fingerprinting features including hardware profile
anomaly score (0.85) provide strong fraud signals. Network-level attributes including proxy detection flags
(0.91) prove highly discriminative.

Figure 2 presents feature category contribution analysis through ablation studies.

Figure 2: Ablation Study Results - Performance Impact by Feature Category
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This grouped bar chart visualizes classification performance across five evaluation metrics (Accuracy,
Precision, Recall, F1-Score, AUC-ROC) under different feature category configurations. The x-axis lists
feature categories: All Features (baseline), Temporal Only, Device Only, Behavioral Only, Network Only,
and Temporal+Device, Temporal+Network, Device+Network combinations. The y-axis represents
gerformance scores from 0 to 100%. Each metric is represented by a distinct colored bar (Accuracy: deep

lue, Precision: green, Recall: orange, F1-Score: red, AUC-ROC: purple), with bars grouped by feature
configuration. The chart includes a legend in the upper right corner identifying each metric by color. Grid
lines at 10% intervals enable precise value readin% Bar heights are labeled with performance values displayed
above each bar. The title "Ablation Study: Classification Performance by Feature Category" appears centered
above the chart. The visualization uses a white background with subtle gray grid lines, maintaining
professional academic aesthetics. Chart dimensions are set to 10 inches width by 6 inches height, suitable for
full-width placement in IEEE double-column format.

Complete feature sets achieve 98.73% accuracy. Temporal-only features attain 94.21% accuracy. Device-only
features reach 93.87% accuracy. Behavioral-only features achieve 89.34% accuracy. Network-only features
attain 92.45% accuracy. Combined feature categories demonstrate synergistic effects, with Temporal+Device
configuration achieving 97.12% accuracy.

4.2.3. Execution time and computational efficiency comparison

Table 5 documents detailed performance profiling across training, inference, and memory consumption
dimensions.

Table 5: Computational Efficiency and Resource Utilization Analysis

Model

. Training Inference Memory Throughput . Scalability
Algorithm Time (min) Latency (ms) Usage (GB) (predictions/sec) (Sﬁ%) Rating
Decision
Tree 8.3 04 2.1 2,500 12.4 Excellent

COMPUTING INNOVATIONS AND APPLICATIONS
C A ISSN: 3068-5516 148



Random 4 5 12

Forest 8.7 833 247.3 Good
XGBoost 674 23 6.3 435 156.8 Good
LightGBM 38.9 1.8 4.9 556 98.7 Very Good
BiLSTM 312.5 8.7 15.4 115 342.6 Poor

CNN 198.3 6.4 11.8 156 278.9 Fair

LightGBM emerges as the optimal algorithm for resource-constrained deployments, achieving near-peak
accuracy (98.65%) while requiring only 38.9 minutes training time and 4.9 GB memory footprint. XGBoost
achieves superior accuracy but demands greater computational resources. Deep learning approaches impose
substantial computational burdens with BILSTM requiring 312.5 minutes training time.

4.3. Ablation Studies and Feature Analysis

4.3.1. Impact of feature categories on detection performance

Systematic ablation studies quantify the marginal contribution of each feature catqgo?. Removing temporal
features reduces F1-score from 97.37% to 92.18%, representing 5.19 percentage point degradation. Excluding
device features decreases Fl-score to 93.45%. Behavioral feature removal results in 94.87% Fl-score.
Removing network features decreases F1-score to 94.12%.

Figure 3 visualizes the progressive performance improvement as additional feature categories are
incorporated.

Figure 3: Progressive Performance Improvement with Feature Category Addition
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This line chart illustrates the incremental performance gains achieved by progressively adding feature
categories to the classification model. The x-axis represents sequential feature category additions (starting
with Temporal, then adding Device, followed by Behavioral, and finally Network features), while the y-axis
displays performance metrics from 85% to 100%. Four separate lines track Accuracy (solid blue line with
circle markers), Precision (dashed green line with square markers), Recall (dotted orange line with triangle
markers), and F1-Score (dash-dot red line with diamond markers). Each data point is clearly marked with its
corresponding marker symbol and annotated with the exact performance value. The chart includes a legend in
the upper left corner identifying each metric. A shaded region between 95% and 100% performance is
highlighted with subtle green tinting, indicating the "high performance zone." Grid lines appear at 5% intervals
on the y-axis and at each feature addition stage on the x-axis. The title "Progressive Performance Improvement
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Through Feature Category Integration" appears centered above the visualization. The background is white
with light gray grid lines maintaining professional presentation standards. Chart dimensions are set to 10
inches width by 7 inches height, optimized for full-width IEEE publication format.

Temporal features alone achieve 94.21% F1-score. Adding device features increases F1-score to 96.34%.
Incorporating behavioral features further improves performance to 96.89% F1-score. The final addition of
network features achieves peak performance of 97.37% F1-score.

4.3.2. Robustness analysis under different fraud sophistication levels

Fraud sophistication analysis evaluates algorithm performance across attack complexity gradients. We stratify
the test set into four sophistication tiers: basic bots (37.2% of fraud), intermecfi,ate bots with timing
randomization (28.4%), advanced bots with device rotation (21.6%), and sophisticated operations combining
multiple evasion tactics (12.8%). Basic bot detection achieves near-perfect performance with XGBoost
attaining 99.87% recall. Intermediate fraud detection maintains strong performance with XGBoost achieving
98.21% recall. Advanced fraud presents increased detection challenges, with recall rates declining to 94.67%
gorz)?’(gBoost. Sophisticated fraud operations prove most challenging, with XGBoost recall declining to
7.23%.

5. Discussion, Implications, and Conclusion

5.1. Key Findings and Practical Implications
5.1.1. Most effective algorithms for real-time deployment

Experimental evaluation reveals XGBoost and LightGBM as optimal algorithm choices for production
deployment contexts. XGBoost achieves peak classification accuracy of 98.73% with 97.37% F1-score.
Inference latency of 2.3 milliseconds per prediction satisfies real-time bidding requirements. LightGBM
provides compelling alternative achieving comparable 98.65% accuracy with substantially reduced
computational footprint. The 1.8 millisecond inference latency facilitates distributed deployment. Deep
learning approaches demonstrate inferior efficiency-performance tradeoffs.

5.1.2. Critical features for distinguishing bot traffic from legitimate users

Feature importance analysis identifies location velocity, IP churn rate, and device configuration consistency
as paramount discrimination signals achieving individual importance scores exceeding 0.85. Geographic
consistency violations represent primary fraud indicators. Device fingerprinting features prove essential for
identifying device spoofing operations. Temporal activity patterns effectively distinguish automated bot
behaviors from organic human interactions. Network infrastructure signals provide robust fraud indicators
resilient to sophisticated evasion attempts.

5.1.3. Trade-offs between detection accuracy and computational cost

Cost-benefit analysis reveals fundamental tradeoffs between detection performance and computational
resource requirements. Tree-based ensemble methods achieve near-optimal accuracy with moderate
computational demands. XGBoost represents the performance-optimized configuration. LightGBM balances
both dimensions. Deep learning approaches impose substantial computational burdens delivering marginal
performance improvements. Decision tree baselines provide computationally efficient alternative suitable for
preliminary fraud filtering.

5.2. Limitations and Future Research Directions
5.2.1. Dataset limitations and generalizability concerns

The experimental framework relies on single-market advertising data encompassing Chinese mobile traffic
gatterns potentially limiting generalizability to diverse geographic regions. Regional variations in user

ehavior may influence detection model transferability. The dataset temporal coverage of seven days
constrains analysis of long-term fraud evolution patterns. Labeling methodology combining automated signals
with expert review achieves high accuracy but introduces potential biases. The focus on click fraud and bot
traffic detection excludes other fraud categories warranting dedicated investigation.

5.2.2. Adversarial robustness and evasion attacks

Performance degradation against sophisticated fraud operations reveals adversarial vulnerability requiring
enhanced detection approaches. The 87% recall rate against advanced attacks indicates substantial room for
improvement through adversarial training procedures. Systematic adversarial testing evaluating model
robustness would quantify vulnerability profiles. Concept drift resulting from continuously evolving fraud
tactics necessitates adaptive learning systems. Online learning procedures enabling incremental model updates
would address temporal distribution sIZifts.
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5.2.3. Emerging fraud patterns: collusion-based and attribution fraud

Contemporary fraud operations increasingly employ coordinated multi-application schemes exploiting
attribution chain vulnerabilities. Collusion-based attacks involving information sharing across multiple
applications systematically evade platform-level detection systems. Graph-based detection approaches
modeling inter-application relationsill)i s represent promising research directions. Attribution fraud schemes
manipulating conversion tracking mechanisms require specialized detection methodologies. SDK-level fraud

demands program analysis techniques including static code analysis and dynamic behavior monitoring.
5.3. Conclusions and Recommendations
5.3.1. Summary of comparative analysis results

This research presents comprehensive comparative evaluation of machine learning algorithms for mobile
advertising fraud detection. Experimental results demonstrate gradient boosting frameworks achieve superior
performance with XGBoost attaining 98.73% accuracy and 97.37% F1-score. LightGBM provides efticient
alternative achieving 98.65% accuracy with substantially reduced computational requirements.
Comprehensive feature engineering encompassing temporal, device, behavioral, and network dimensions
proves essential. Feature importance anag/sis 1dentifies location velocity, IP churn rate, and device
configuration consistency as paramount discrimination signals.

5.3.2. Deployment recommendations for advertising platforms

Production deployment should prioritize LightGBM for platforms emphasizing operational efficiency and
XGBoost for contexts prioritizing detection accuracy. Comprehensive feature engineering incorporating
temporal patterns, device fingerprinting, behavioral signals, and network attributes provides robust detection.
Multi-stage detection architectures employing computationally efficient preliminary filtering followed by
sophisticated secondary analysis optimize accuracy-latency tradeoffs. Continuous model retraining
procedures operating on weekly or bi-weekly intervals address concept drift. Cost-sensitive threshold selection
procedures should incorporate business-specific false positive and false negative penalties. Real-time
monitoring systems tracking model performance degradation enable proactive intervention.

References

[1].S. Sun, L. Yu, X. Zhang, M. Xue, R. Zhou, H. Zhu, S. Chen, X. Luo, Y. Liu, and X. Lin, "Understanding
and detecting mobile ad fraud through the lens of invalid traffic," in Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security, 2021, pp. 287-303.

[2].C. M. R. Haider, A. Igbal, A. H. Rahman, and M. S. Rahman, "An ensemble learning based approach for
impression fraud detection in mobile advertising," Journal of Network and Computer Applications, vol.
112, pp. 126-141, 2018.

[3].J. Kim, J. Park, and S. Son, "The abuser inside apps: Finding the culprit committing mobile ad fraud," in
NDSS, 2021.

[4].Batool and Y. C. Byun, "An ensemble architecture based on deep learning model for click fraud detection
in pay-per-click advertisement campaign," IEEE Access, vol. 10, pp. 113410-113426, 2022.

[5].S. Nagaraja and R. Shah, "Clicktok: Click fraud detection using traffic analysis," in Proceedings of the
12th conference on security and privacy in wireless and mobile networks, 2019, pp. 105-116.

[6].T. Zhu, Y. Meng, H. Hu, X. Zhang, M. Xue, and H. Zhu, "Dissecting click fraud autonomy in the wild,"
in Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, 2021,
pp. 271-286.

[7].T. Hasan, J. Malik, I. Bibi, W. U. Khan, F. N. Al-Wesabi, K. Dev, and G. Huang, "Securing industrial
internet of things against botnet attacks using hybrid deep learning approach," IEEE Transactions on
Network Science and Engineering, vol. 10, no. 5, pp. 2952-2963, 2022.

[8].S. Sriram, R. A. V. Vinayakumar, M. Alazab, and S. KP, "Network flow based IoT botnet attack detection
using deep learning," in IEEE INFOCOM 2020-IEEE conference on computer communications
workshops (INFOCOM WKSHPS), July 2020, pp. 189-194.

[9].T. Zhu, C. Shou, Z. Huang, G. Chen, X. Zhang, Y. Meng, B. Liu, and H. Zhu, "Unveiling collusion-based
ad attribution laundering fraud: Detection, analysis, and security implications," in Proceedings of the 2024
on ACM SIGSAC Conference on Computer and Communications Security, December 2024, pp. 2963-
29717.

COMPUTING INNOVATIONS AND APPLICATIONS
ISSN: 3068-5516 151



[10]. H. Chari, S. Aswale, V. N. Pawar, P. Shetgaonkar, and K. C. Kumar, "Advertisement click fraud
detection using machine learning techniques," in 2021 International Conference on Technological
Advancements and Innovations (ICTAI), November 2021, pp. 109-114.

[11]. Batool, J. Kim, and Y. C. Byun, "Enhanced click fraud detection in digital advertising through
ensemble deep learning," in International Conference on Frontier Computing, July 2024, pp. 22-27.

[12]. V.B.Mahesh, K. V. S. Chandra, L. S. P. Babu, V. A. Sowjanya, and M. Mohammed, "Clicking fraud
detection for online advertising using machine learning," in 2023 4th International Conference on
Intelligent Technologies (CONIT), June 2024, pp. 1-6.

COMPUTING INNOVATIONS AND APPLICATIONS
ISSN: 3068-5516 152



