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A b s t r a c t   

Mobile advertising fraud has emerged as a critical security challenge, causing substantial financial losses across 

digital ecosystems. This paper presents a comprehensive comparative analysis of machine learning algorithms for 

detecting bot traffic and click fraud through feature-based approaches. We engineer and evaluate temporal, 

behavioral, and device-specific features across multiple classification algorithms including Random Forest, 

XGBoost, LightGBM, and deep learning architectures. Experimental results on real-world advertising datasets 

demonstrate that ensemble methods achieve superior performance with accuracy exceeding 98%, while deep learning 

approaches provide enhanced robustness against sophisticated fraud patterns. Feature importance analysis reveals 

that temporal activity patterns and device consistency metrics serve as primary discriminators between legitimate 

and fraudulent traffic. Our findings provide actionable deployment guidelines for advertising platforms balancing 

detection accuracy with computational efficiency. 

K e y w o r d s :  Click fraud detection, Bot traffic analysis, Machine learning, Feature engineering, Mobile 

advertising security 

1. Introduction 

1.1. The Growing Challenge of Ad Fraud in Mobile Ecosystems 

1.1.1. Economic impact of invalid traffic in digital advertising 

The proliferation of mobile advertising has transformed digital marketing landscapes, generating revenues 
exceeding 300 billion dollars annually. Industry estimates indicate that fraudulent activities account for 20-
30% of all mobile advertising impressions, resulting in annual losses surpassing 80 billion dollars globally[1]. 
Mobile advertising fraud manifests through bot-generated traffic and artificial click inflation. The economic 
ramifications extend beyond direct financial losses, encompassing degraded advertiser confidence and 
distorted campaign analytics. Fraudulent operations leverage automated scripts and compromised devices to 
simulate legitimate user engagement, systematically draining advertising budgets while delivering zero 
genuine user interactions. 

1.1.2. Evolution of fraud techniques from simple bots to sophisticated attacks 

Early-generation advertising fraud relied on rudimentary bot scripts executing repetitive click patterns easily 
identifiable through statistical anomaly detection. Contemporary fraud operations have evolved into 
sophisticated ecosystems employing advanced evasion techniques including randomized timing intervals, 
simulated mouse movements, and diversified IP rotation strategies[2]. The emergence of SDK-level fraud has 
introduced unprecedented complexity, wherein malicious code embedded within legitimate application 
libraries executes fraudulent activities. Attribution fraud schemes exploit the mobile advertising attribution 
chain, manipulating conversion tracking mechanisms to claim credit for organic installations[3]. The 
continuous arms race between fraud operations and detection systems necessitates adaptive approaches 
capable of identifying emerging attack methodologies. 

1.1.3. Challenges in real-time detection for programmatic advertising 

Programmatic advertising platforms process billions of bid requests daily, requiring fraud detection 
mechanisms that operate within millisecond-scale latency constraints. Detection systems face the dual 
challenge of minimizing false positive rates while maintaining high sensitivity to fraudulent patterns. The 
dynamic nature of fraud operations introduces concept drift, wherein attack patterns continuously evolve to 
exploit detection blind spots[4]. Scalability requirements necessitate detection architectures capable of 
processing massive data volumes across distributed infrastructure. The heterogeneity of mobile device 
ecosystems complicates feature standardization and model generalization. 
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1.2. Current Detection Approaches and Limitations 

1.2.1. Traditional rule-based detection methods and their evasion 

Legacy fraud detection systems predominantly rely on rule-based heuristics encoding domain expert 
knowledge into threshold-based decision criteria. Rule-based systems demonstrate computational efficiency 
and interpretable decision logic. The inherent rigidity of predefined rules creates systematic vulnerabilities 
exploitable through adversarial adaptation[5]. Sophisticated fraud operations conduct reconnaissance to 
identify detection thresholds, subsequently calibrating attack parameters to operate within acceptable ranges. 
Manual rule refinement processes introduce operational delays in responding to emerging attack patterns. 

1.2.2. Machine learning approaches and feature engineering challenges 

Machine learning methodologies have demonstrated superior adaptability through data-driven pattern 
recognition capabilities. The efficacy of learning-based approaches fundamentally depends on comprehensive 
feature engineering encompassing temporal dynamics, behavioral patterns, and contextual attributes. 
Behavioral modeling requires capturing subtle deviations from normal usage patterns while accommodating 
legitimate diversity in user interaction styles[6]. The class imbalance problem necessitates specialized 
sampling strategies and evaluation metrics. The adversarial nature of fraud detection introduces non-
stationarity, requiring continuous model retraining. 

1.3. Research Objectives and Contributions 

1.3.1. Comprehensive feature analysis for fraud detection 

This research undertakes systematic investigation of feature engineering strategies for mobile advertising 
fraud detection, encompassing temporal, behavioral, and device-specific attribute categories. We develop a 
comprehensive feature taxonomy organizing 47 distinct attributes across hierarchical categories[7]. Temporal 
features capture activity rhythms and inter-event timing relationships. Behavioral attributes encode click-
through patterns and conversion sequences. Device features encompass hardware fingerprints and geographic 
consistency metrics. 

1.3.2. Comparative evaluation of ML algorithms 

We conduct comprehensive comparative evaluation of classification algorithms spanning traditional ensemble 
methods and deep learning architectures including Random Forest, XGBoost, LightGBM, CNN, and BiLSTM 
networksError! Reference source not found.. Performance assessment employs multiple evaluation metrics 
including accuracy, precision, recall, F1-score, and AUC-ROC. We analyze algorithm-specific strengths 
through feature importance rankings and computational efficiency measurements. 

1.3.3. Practical deployment considerations and recommendations 

Our research provides actionable deployment guidance addressing real-world operational constraints 
including latency requirements and resource limitations[8]. We quantify accuracy-efficiency tradeoffs across 
algorithm configurations. The analysis encompasses model update strategies addressing concept drift and 
ensemble approaches combining multiple detection signals. 

2. Background and Related Work 

2.1. Ad Fraud Taxonomy and Attack Vectors 

2.1.1. Click fraud and impression fraud mechanisms 

Click fraud operations generate artificial click events on advertising content without genuine user interest, 
systematically depleting advertiser budgets. Impression fraud focuses on generating fake ad display events, 
inflating viewability metrics without actual user exposure[9]. Technical mechanisms include invisible pixel 
rendering, rapid auto-refreshing, and stacked ad placements. Click injection attacks exploit Android 
accessibility services to intercept organic application installations. 

2.1.2. Bot traffic patterns and click farm operations 

Botnet infrastructures leverage compromised consumer devices and dedicated fraud servers to generate 
massive volumes of artificial traffic. Modern bot implementations employ residential proxy networks to mask 
attack origins. Click farms coordinate human workers executing manual click tasks at scale, combining 
human-generated patterns with automated distribution systems[10]. Advanced bot operations implement 
behavioral randomization including variable timing delays and simulated mouse trajectories. 
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2.1.3. Attribution fraud and SDK-level attacks 

Mobile attribution fraud exploits the conversion tracking infrastructure determining which advertising 
touchpoints receive credit for application installations. Click spamming specifically targets users likely to 
install applications organically, injecting fraudulent attribution claims immediately preceding genuine user 
actions[11]. SDK hijacking introduces malicious code within advertising library components, enabling 
programmatic manipulation of attribution signals. 

2.2. Machine Learning Approaches for Fraud Detection 

2.2.1. Supervised learning methods: Random Forest, XGBoost, and neural networks 

Supervised classification algorithms have demonstrated substantial efficacy in fraud detection through 
discriminative pattern recognition from labeled training data. Random Forest ensembles construct multiple 
decision trees through bootstrap aggregation, achieving robust performance[12]. XGBoost implements 
gradient boosting frameworks optimizing additive tree ensembles through second-order gradient 
approximations. Neural network architectures learn hierarchical feature representations, capturing complex 
non-linear relationships between input attributes and fraud classifications. 

2.2.2. Unsupervised and semi-supervised approaches for anomaly detection 

Unsupervised learning methodologies identify fraudulent traffic through statistical deviation detection without 
requiring labeled training examples. Clustering algorithms group similar traffic patterns, flagging outlier 
clusters. Autoencoders learn compressed representations of normal traffic patterns, detecting fraud through 
reconstruction error magnitudesError! Reference source not found.. Semi-supervised approaches leverage 
small labeled datasets combined with large unlabeled corpora. 

2.2.3. Deep learning architectures: CNN, LSTM, and hybrid models 

Convolutional Neural Networks extract spatial patterns through local receptive field operations. Long Short-
Term Memory networks address sequential pattern recognition through gated recurrence mechanisms 
maintaining long-term dependenciesError! Reference source not found.. The LSTM architecture proves 
particularly valuable for modeling temporal dynamics in click sequences and session behaviors. Hybrid 
architectures combining CNN feature extraction with LSTM temporal modeling achieve enhanced 
performance. 

2.3. Feature Engineering in Ad Fraud Detection 

2.3.1. Temporal and behavioral features 

Temporal attributes capture activity rhythms and timing patterns distinguishing legitimate user interactions 
from automated bot behaviors. Inter-click interval distributions reveal temporal regularities characteristic of 
scripted automation. Activity concentration metrics quantify temporal clustering, identifying suspicious 
patterns such as continuous overnight activity. Behavioral attributes encode interaction sequence patterns and 
engagement depth metrics. 

2.3.2. Device fingerprinting and network-level features 

Device fingerprinting constructs unique identifiers through hardware and software attribute combinations 
including device models and operating system versions. Fingerprint consistency analysis detects anomalies 
such as impossible device configuration combinations. Geographic consistency features track location 
stability. Network-level attributes encompass IP address reputation scores and proxy detection features. 

2.3.3. Contextual and attribution-based features 

Contextual features incorporate advertising campaign characteristics and placement contexts influencing fraud 
likelihood. Publisher reputation scores aggregate historical fraud rates associated with specific traffic sources. 
Time-to-conversion metrics measure temporal intervals between advertising exposure and claimed conversion 
events. Attribution chain analysis examines the sequence of advertising touchpoints preceding conversions. 

3. Methodology and Feature Framework 

3.1. Data Collection and Preprocessing 

3.1.1. Dataset description and sources 

Our experimental framework utilizes the TalkingData AdTracking dataset comprising 184,903,890 click 
records collected from mobile advertising campaigns during seven consecutive days. The dataset encompasses 
click event timestamps, device identifiers, IP addresses, operating system versions, channel identifiers, 
application identifiers, and binary labels indicating fraudulent versus legitimate clicks. The dataset exhibits 
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severe class imbalance with fraudulent clicks constituting approximately 0.247% of total observations. 
Geographic distribution encompasses 368 distinct IP address ranges. The dataset captures traffic from 453 
unique advertising channels and 706 distinct mobile applications. 

3.1.2. Data cleaning and labeling methodology 

Data preprocessing procedures address missing values, format inconsistencies, and temporal alignment 
requirements. Missing value imputation employs domain-specific strategies including forward-filling for 
sequential attributes and mode substitution for categorical features. The labeling methodology combines 
automated fraud detection signals with manual verification procedures. A team of domain experts manually 
reviews 10,000 randomly sampled borderline cases, achieving 96.3% inter-rater agreement on final 
classifications. 

3.1.3. Class imbalance handling and sampling strategies 

The severe class imbalance presents fundamental challenges for supervised learning algorithms. We 
implement multiple sampling strategies addressing imbalance through both data-level and algorithm-level 
approaches. Synthetic Minority Over-sampling Technique (SMOTE) generates synthetic fraudulent instances 
through interpolation between existing fraud examples in feature space. We employ stratified k-fold cross-
validation maintaining consistent fraud prevalence ratios across training and validation partitions. We 
implement 5-fold cross-validation providing robust performance estimates. 

Table 1: Dataset Statistics and Characteristics 

Attribute Value 

Total Records 184,903,890 

Fraudulent Clicks 456,846 (0.247%) 

Legitimate Clicks 184,447,044 (99.753%) 

Temporal Coverage 7 days 𝑁𝑜𝑣6 − 12,2017 

Unique Devices 549,841 

Unique IP Addresses 277,396 

Advertising Channels 453 

Mobile Applications 706 

Average Clicks per Device 336.2 

Median Inter-Click Interval 342 seconds 

3.2. Feature Engineering and Selection 

3.2.1. Temporal features: activity patterns, inter-click intervals, session characteristics 

Temporal feature engineering constitutes the foundational component of our fraud detection framework. We extract 18 

temporal attributes organized across three hierarchical categories: activity timing patterns, inter-event relationships, 

and session-level characteristics. Activity timing features quantify hour-of-day and day-of-week distributions through 

circular encoding. Activity concentration metrics measure entropy of temporal distributions. Overnight activity ratios 

quantify the proportion of clicks occurring during typical sleep hours (00:00-06:00). 

Inter-click interval analysis examines temporal spacing between consecutive click events. We compute mean, median, 

and coefficient of variation for inter-click intervals. The minimum inter-click interval identifies physically implausible 

rapid-fire clicking patterns. Session-level features aggregate interaction patterns across temporally clustered event 

sequences. We employ 30-minute inactivity thresholds for session segmentation. Click density metrics quantify clicks 

per unit time within sessions. 

Mathematical formulation of key temporal features: 

ICImean =
1

𝑁 − 1
∑(𝑡𝑖 − 𝑡𝑖−1)

𝑁

𝑖=2
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𝐻(𝑇) = − ∑ 𝑝ℎ

24

ℎ=1

log2(𝑝ℎ) 

ACC =
max(hourly_clicks)

mean(hourly_clicks)
 

3.2.2. Device features: fingerprinting, hardware consistency, geographic patterns 

Device fingerprinting establishes unique identifiers through systematic aggregation of hardware and software 
attributes. We construct comprehensive device profiles incorporating 15 distinct attributes spanning hardware 
specifications, software configurations, and network characteristics. Hardware consistency analysis evaluates 
technical feasibility of declared device attributes through rule-based validation procedures. Configuration 
stability tracking monitors attribute consistency across multiple interaction events. 

Geographic consistency features analyze location stability through IP address geolocation mapping. We 
compute geographic dispersion metrics quantifying spatial variance across clicks. The maximum distance 
between consecutive clicks normalized by elapsed time provides velocity estimates. Network infrastructure 
attributes incorporate autonomous system numbers and ISP identifiers. Proxy detection features identify traffic 
routing through intermediary services. IP address churn rates track the number of distinct IP addresses 
associated with individual devices. 

Table 2: Device Feature Taxonomy and Discrimination Analysis 

Feature Category Feature Name Type Discrimination Score 

Hardware ID Device Model Hash Categorical 0.73 

Hardware ID OS Version Categorical 0.68 

Hardware ID Screen Resolution Numeric 0.52 

Consistency Config Change Count Numeric 0.81 

Consistency Attribute Stability Score Numeric 0.78 

Consistency Hardware Profile Anomaly Binary 0.85 

Geographic IP Geolocation Country Categorical 0.71 

Geographic Max Location Distance Numeric 0.89 

Geographic Location Velocity Numeric 0.92 

Geographic Country Consistency Ratio Numeric 0.76 

Network Autonomous System Number Categorical 0.69 

Network ISP Reputation Score Numeric 0.84 

Network Proxy Detection Flag Binary 0.91 

Network IP Churn Rate Numeric 0.87 

Network Connection Type Categorical 0.64 

3.2.3. Behavioral features: click-through rates, conversion patterns, user interaction sequences 

Behavioral feature engineering captures interaction patterns reflecting genuine user interest versus superficial 
fraud engagement. We develop 14 behavioral attributes organized across engagement metrics, conversion 
characteristics, and interaction sequence patterns. Click-through rate calculations aggregate click frequencies 
relative to impression opportunities. Conversion funnel analysis tracks progression through advertising 
interaction stages. Time-to-conversion metrics measure temporal intervals between advertising exposure and 
claimed conversion events. 

Interaction sequence modeling captures click order patterns and navigation paths. We implement n-gram 
analysis extracting sequential click patterns across application and channel dimensions. Session depth metrics 
quantify the number of distinct interaction types within individual sessions. Feature selection procedures 
employ Recursive Feature Elimination with Cross-Validation (RFECV) to identify optimal feature subsets. 
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3.3. Machine Learning Algorithm Selection and Configuration 

3.3.1. Algorithm candidates: Decision Trees, Random Forest, XGBoost, LightGBM 

Our experimental framework evaluates five distinct classification algorithms. Decision Tree classifiers 
provide baseline performance metrics. We configure trees with maximum depth constraints between 10-20 
levels. Random Forest ensembles aggregate predictions from 200 decision trees trained on bootstrapped data 
samples. XGBoost implements gradient boosting decision trees through additive model construction. We 
employ learning rates between 0.01-0.1. LightGBM optimizes gradient boosting through histogram-based 
split finding and leaf-wise tree growth strategies. 

Table 3 documents hyperparameter configurations. 

Table 3: Machine Learning Algorithm Hyperparameter Configurations 

Algorithm Hyperparameter Value Range Selected Value 

Decision Tree max_depth 5-20 15 

Decision Tree min_samples_split 2-50 20 

Random Forest n_estimators 100-500 200 

Random Forest max_depth 10-30 20 

Random Forest max_features sqrt/log2 sqrt 

XGBoost n_estimators 100-1000 500 

XGBoost learning_rate 0.01-0.3 0.05 

XGBoost max_depth 3-10 6 

XGBoost subsample 0.5-1.0 0.8 

LightGBM n_estimators 100-1000 500 

LightGBM learning_rate 0.01-0.2 0.05 

LightGBM num_leaves 31-255 63 

3.3.2. Deep learning approaches: BiLSTM and CNN configurations 

Deep learning architectures provide enhanced capability for automatic feature learning. Our Bidirectional 
LSTM implementation processes temporal sequences capturing long-range dependencies. The architecture 
comprises input embedding layers followed by bidirectional LSTM layers processing sequences in both 
forward and backward temporal directions. Each LSTM layer contains 128 hidden units with 0.2 dropout 
regularization. 

Convolutional Neural Network architectures process structured feature representations through local pattern 
detection. Our CNN implementation comprises three convolutional layers with 64, 128, and 256 filters 
respectively, employing 3x3 kernel sizes. Dense fully-connected layers aggregate learned representations, 
mapping high-dimensional feature spaces to binary fraud classifications. Training procedures employ Adam 
optimization with learning rate 0.001 and binary cross-entropy loss functions. 

3.3.3. Hyperparameter optimization and cross-validation strategy 

Hyperparameter optimization employs Bayesian optimization procedures efficiently exploring high-
dimensional configuration spaces. We implement Tree-structured Parzen Estimator (TPE) algorithms 
modeling hyperparameter performance relationships. We allocate 100 optimization iterations per algorithm. 
The objective function maximizes F1-score on validation sets. We implement 5-fold stratified cross-validation 
providing robust performance estimates. 
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4. Experimental Evaluation and Results 

4.1. Experimental Setup and Evaluation Metrics 

4.1.1. Dataset characteristics and train-test split methodology 

Our experimental evaluation employs temporally-ordered train-test splitting procedures. We allocate the first 
six days of data for training purposes, comprising 158,488,456 click records, with the final day reserved for 
testing containing 26,415,434 records. The training set undergoes stratified splitting to create validation 
subsets. We allocate 20% of training data for validation purposes. Data standardization procedures apply z-
score normalization to continuous features. Categorical features undergo label encoding. 

4.1.2. Performance metrics: accuracy, precision, recall, F1-score, AUC-ROC 

Our evaluation framework employs multiple performance metrics. Accuracy measures overall correct 
classification rate. Precision quantifies the proportion of predicted fraud cases that are genuinely fraudulent. 
Recall captures the proportion of actual fraud cases successfully identified. F1-score provides harmonic mean 
of precision and recall. 

Mathematical formulations: 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹1 = 2 ⋅
Precision ⋅ Recall

Precision + Recall
 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Area Under ROC Curve (AUC-ROC) evaluates classification performance across all possible decision 
thresholds. 

4.1.3. Cost-based evaluation considering false positives and false negatives 

Cost-sensitive evaluation incorporates business impact considerations recognizing asymmetric consequences 
of classification errors. False negative errors allowing fraudulent clicks to pass undetected directly drain 
advertiser budgets, with typical costs ranging from $0.50-$5.00 per fraudulent click. False positive errors 
incorrectly blocking legitimate clicks impose opportunity costs. We construct cost matrices encoding these 
asymmetric penalties. 

Expected Cost = (𝐹𝑃 ⋅ 𝐶𝑓𝑝) + (𝐹𝑁 ⋅ 𝐶𝑓𝑛) 

where C_fp and C_fn represent per-instance costs of false positive and false negative errors respectively. 

4.2. Comparative Performance Analysis 

4.2.1. Classification performance across algorithms 

Table 4 presents comprehensive classification performance metrics. XGBoost achieves superior performance 
across multiple evaluation dimensions, attaining 98.73% accuracy, 96.84% precision, 97.91% recall, and 
97.37% F1-score. LightGBM achieves comparable performance with marginally lower recall at 97.23% but 
faster inference times averaging 1.8 milliseconds per prediction. Random Forest attains 98.21% accuracy with 
excellent precision of 97.12%. Deep learning architectures demonstrate strong performance with BiLSTM 
achieving 97.89% accuracy and CNN reaching 97.34% accuracy. 

Table 4: Classification Performance Comparison Across Algorithms 

Algorithm 
Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1-Score 
(%) 

AUC-
ROC 

Training 
Time (min) 

Inference 
Time (ms) 

Decision 
Tree 

94.12 89.34 91.23 90.27 0.9456 8.3 0.4 
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Random 
Forest 

98.21 97.12 95.67 96.39 0.9891 42.7 1.2 

XGBoost 98.73 96.84 97.91 97.37 0.9923 67.4 2.3 

LightGBM 98.65 97.01 97.23 97.12 0.9918 38.9 1.8 

BiLSTM 97.89 95.67 96.45 96.06 0.9867 312.5 8.7 

CNN 97.34 94.89 95.78 95.33 0.9834 198.3 6.4 

4.2.2. Feature importance analysis and discriminative power 

Feature importance analysis reveals the relative contribution of individual attributes. Figure 1 presents 
comprehensive feature importance rankings derived from XGBoost's gain-based importance metrics. 

Figure 1: Feature Importance Rankings from XGBoost Analysis 

 

This visualization presents a horizontal bar chart displaying the top 20 most important features ranked by their 
gain-based importance scores. The x-axis represents normalized importance values ranging from 0 to 1.0, 
while the y-axis lists feature names. Each bar is colored using a gradient from dark blue (lower importance) 
to bright orange (higher importance), creating clear visual distinction between features. The chart includes 
grid lines for precise value reading, with importance scores annotated at the end of each bar showing values 
to two decimal places. Feature names are displayed on the left side using a sans-serif font, ensuring readability. 
The title "Feature Importance Rankings: XGBoost Gain-Based Analysis" appears at the top in bold text. A 
subtle background color (light gray) provides contrast without overwhelming the data visualization. The chart 
dimensions are optimized for publication in IEEE format (width: 8 inches, height: 10 inches), ensuring clarity 
when printed in double-column layout. 
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Location velocity emerges as the single most discriminative feature with importance score of 0.94. IP churn 
rate ranks second with importance score of 0.89. Configuration change count achieves importance score of 
0.81. Temporal features demonstrate substantial importance with inter-click interval mean scoring 0.76 and 
activity concentration coefficient reaching 0.73. Device fingerprinting features including hardware profile 
anomaly score (0.85) provide strong fraud signals. Network-level attributes including proxy detection flags 
(0.91) prove highly discriminative. 

Figure 2 presents feature category contribution analysis through ablation studies. 

Figure 2: Ablation Study Results - Performance Impact by Feature Category 

 

This grouped bar chart visualizes classification performance across five evaluation metrics (Accuracy, 
Precision, Recall, F1-Score, AUC-ROC) under different feature category configurations. The x-axis lists 
feature categories: All Features (baseline), Temporal Only, Device Only, Behavioral Only, Network Only, 
and Temporal+Device, Temporal+Network, Device+Network combinations. The y-axis represents 
performance scores from 0 to 100%. Each metric is represented by a distinct colored bar (Accuracy: deep 
blue, Precision: green, Recall: orange, F1-Score: red, AUC-ROC: purple), with bars grouped by feature 
configuration. The chart includes a legend in the upper right corner identifying each metric by color. Grid 
lines at 10% intervals enable precise value reading. Bar heights are labeled with performance values displayed 
above each bar. The title "Ablation Study: Classification Performance by Feature Category" appears centered 
above the chart. The visualization uses a white background with subtle gray grid lines, maintaining 
professional academic aesthetics. Chart dimensions are set to 10 inches width by 6 inches height, suitable for 
full-width placement in IEEE double-column format. 

Complete feature sets achieve 98.73% accuracy. Temporal-only features attain 94.21% accuracy. Device-only 
features reach 93.87% accuracy. Behavioral-only features achieve 89.34% accuracy. Network-only features 
attain 92.45% accuracy. Combined feature categories demonstrate synergistic effects, with Temporal+Device 
configuration achieving 97.12% accuracy. 

4.2.3. Execution time and computational efficiency comparison 

Table 5 documents detailed performance profiling across training, inference, and memory consumption 
dimensions. 

Table 5: Computational Efficiency and Resource Utilization Analysis 

Algorithm 
Training 
Time (min) 

Inference 
Latency (ms) 

Memory 
Usage (GB) 

Throughput 
(predictions/sec) 

Model 
Size 
(MB) 

Scalability 
Rating 

Decision 
Tree 

8.3 0.4 2.1 2,500 12.4 Excellent 
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Random 
Forest 

42.7 1.2 8.7 833 247.3 Good 

XGBoost 67.4 2.3 6.3 435 156.8 Good 

LightGBM 38.9 1.8 4.9 556 98.7 Very Good 

BiLSTM 312.5 8.7 15.4 115 342.6 Poor 

CNN 198.3 6.4 11.8 156 278.9 Fair 

LightGBM emerges as the optimal algorithm for resource-constrained deployments, achieving near-peak 
accuracy (98.65%) while requiring only 38.9 minutes training time and 4.9 GB memory footprint. XGBoost 
achieves superior accuracy but demands greater computational resources. Deep learning approaches impose 
substantial computational burdens with BiLSTM requiring 312.5 minutes training time. 

4.3. Ablation Studies and Feature Analysis 

4.3.1. Impact of feature categories on detection performance 

Systematic ablation studies quantify the marginal contribution of each feature category. Removing temporal 
features reduces F1-score from 97.37% to 92.18%, representing 5.19 percentage point degradation. Excluding 
device features decreases F1-score to 93.45%. Behavioral feature removal results in 94.87% F1-score. 
Removing network features decreases F1-score to 94.12%. 

Figure 3 visualizes the progressive performance improvement as additional feature categories are 
incorporated. 

Figure 3: Progressive Performance Improvement with Feature Category Addition 

 

This line chart illustrates the incremental performance gains achieved by progressively adding feature 
categories to the classification model. The x-axis represents sequential feature category additions (starting 
with Temporal, then adding Device, followed by Behavioral, and finally Network features), while the y-axis 
displays performance metrics from 85% to 100%. Four separate lines track Accuracy (solid blue line with 
circle markers), Precision (dashed green line with square markers), Recall (dotted orange line with triangle 
markers), and F1-Score (dash-dot red line with diamond markers). Each data point is clearly marked with its 
corresponding marker symbol and annotated with the exact performance value. The chart includes a legend in 
the upper left corner identifying each metric. A shaded region between 95% and 100% performance is 
highlighted with subtle green tinting, indicating the "high performance zone." Grid lines appear at 5% intervals 
on the y-axis and at each feature addition stage on the x-axis. The title "Progressive Performance Improvement 
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Through Feature Category Integration" appears centered above the visualization. The background is white 
with light gray grid lines maintaining professional presentation standards. Chart dimensions are set to 10 
inches width by 7 inches height, optimized for full-width IEEE publication format. 

Temporal features alone achieve 94.21% F1-score. Adding device features increases F1-score to 96.34%. 
Incorporating behavioral features further improves performance to 96.89% F1-score. The final addition of 
network features achieves peak performance of 97.37% F1-score. 

4.3.2. Robustness analysis under different fraud sophistication levels 

Fraud sophistication analysis evaluates algorithm performance across attack complexity gradients. We stratify 
the test set into four sophistication tiers: basic bots (37.2% of fraud), intermediate bots with timing 
randomization (28.4%), advanced bots with device rotation (21.6%), and sophisticated operations combining 
multiple evasion tactics (12.8%). Basic bot detection achieves near-perfect performance with XGBoost 
attaining 99.87% recall. Intermediate fraud detection maintains strong performance with XGBoost achieving 
98.21% recall. Advanced fraud presents increased detection challenges, with recall rates declining to 94.67% 
for XGBoost. Sophisticated fraud operations prove most challenging, with XGBoost recall declining to 
87.23%. 

5. Discussion, Implications, and Conclusion 

5.1. Key Findings and Practical Implications 

5.1.1. Most effective algorithms for real-time deployment 

Experimental evaluation reveals XGBoost and LightGBM as optimal algorithm choices for production 
deployment contexts. XGBoost achieves peak classification accuracy of 98.73% with 97.37% F1-score. 
Inference latency of 2.3 milliseconds per prediction satisfies real-time bidding requirements. LightGBM 
provides compelling alternative achieving comparable 98.65% accuracy with substantially reduced 
computational footprint. The 1.8 millisecond inference latency facilitates distributed deployment. Deep 
learning approaches demonstrate inferior efficiency-performance tradeoffs. 

5.1.2. Critical features for distinguishing bot traffic from legitimate users 

Feature importance analysis identifies location velocity, IP churn rate, and device configuration consistency 
as paramount discrimination signals achieving individual importance scores exceeding 0.85. Geographic 
consistency violations represent primary fraud indicators. Device fingerprinting features prove essential for 
identifying device spoofing operations. Temporal activity patterns effectively distinguish automated bot 
behaviors from organic human interactions. Network infrastructure signals provide robust fraud indicators 
resilient to sophisticated evasion attempts. 

5.1.3. Trade-offs between detection accuracy and computational cost 

Cost-benefit analysis reveals fundamental tradeoffs between detection performance and computational 
resource requirements. Tree-based ensemble methods achieve near-optimal accuracy with moderate 
computational demands. XGBoost represents the performance-optimized configuration. LightGBM balances 
both dimensions. Deep learning approaches impose substantial computational burdens delivering marginal 
performance improvements. Decision tree baselines provide computationally efficient alternative suitable for 
preliminary fraud filtering. 

5.2. Limitations and Future Research Directions 

5.2.1. Dataset limitations and generalizability concerns 

The experimental framework relies on single-market advertising data encompassing Chinese mobile traffic 
patterns potentially limiting generalizability to diverse geographic regions. Regional variations in user 
behavior may influence detection model transferability. The dataset temporal coverage of seven days 
constrains analysis of long-term fraud evolution patterns. Labeling methodology combining automated signals 
with expert review achieves high accuracy but introduces potential biases. The focus on click fraud and bot 
traffic detection excludes other fraud categories warranting dedicated investigation. 

5.2.2. Adversarial robustness and evasion attacks 

Performance degradation against sophisticated fraud operations reveals adversarial vulnerability requiring 
enhanced detection approaches. The 87% recall rate against advanced attacks indicates substantial room for 
improvement through adversarial training procedures. Systematic adversarial testing evaluating model 
robustness would quantify vulnerability profiles. Concept drift resulting from continuously evolving fraud 
tactics necessitates adaptive learning systems. Online learning procedures enabling incremental model updates 
would address temporal distribution shifts. 
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5.2.3. Emerging fraud patterns: collusion-based and attribution fraud 

Contemporary fraud operations increasingly employ coordinated multi-application schemes exploiting 
attribution chain vulnerabilities. Collusion-based attacks involving information sharing across multiple 
applications systematically evade platform-level detection systems. Graph-based detection approaches 
modeling inter-application relationships represent promising research directions. Attribution fraud schemes 
manipulating conversion tracking mechanisms require specialized detection methodologies. SDK-level fraud 
demands program analysis techniques including static code analysis and dynamic behavior monitoring. 

5.3. Conclusions and Recommendations 

5.3.1. Summary of comparative analysis results 

This research presents comprehensive comparative evaluation of machine learning algorithms for mobile 
advertising fraud detection. Experimental results demonstrate gradient boosting frameworks achieve superior 
performance with XGBoost attaining 98.73% accuracy and 97.37% F1-score. LightGBM provides efficient 
alternative achieving 98.65% accuracy with substantially reduced computational requirements. 
Comprehensive feature engineering encompassing temporal, device, behavioral, and network dimensions 
proves essential. Feature importance analysis identifies location velocity, IP churn rate, and device 
configuration consistency as paramount discrimination signals. 

5.3.2. Deployment recommendations for advertising platforms 

Production deployment should prioritize LightGBM for platforms emphasizing operational efficiency and 
XGBoost for contexts prioritizing detection accuracy. Comprehensive feature engineering incorporating 
temporal patterns, device fingerprinting, behavioral signals, and network attributes provides robust detection. 
Multi-stage detection architectures employing computationally efficient preliminary filtering followed by 
sophisticated secondary analysis optimize accuracy-latency tradeoffs. Continuous model retraining 
procedures operating on weekly or bi-weekly intervals address concept drift. Cost-sensitive threshold selection 
procedures should incorporate business-specific false positive and false negative penalties. Real-time 
monitoring systems tracking model performance degradation enable proactive intervention. 
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