CIA Open Access
Graph-based Representation Learning for Financial Fraud and
Anomaly Transaction Detection
Chuanli Wei', Liya Ge"?, Nathan Brooks’

I Computer Science, University of Southern California, CA, USA
L2 Master of Science in Finance, Washington University, MO, USA

2 Data Analytics, Georgia Institute of Technology, Atlanta, GA, USA
DOI: 10.63575/C1A.2024.20113

Abstract

Financial fraud detection has emerged as a critical challenge in modern banking systems, with fraudulent
transactions causing billions in annual losses worldwide. Traditional rule-based and statistical methods struggle to
adapt to sophisticated fraud patterns and evolving attack vectors. This paper proposes a graph-based representation
learning approach leveraging Graph Neural Networks to capture complex relational patterns in financial transaction
networks. The methodology constructs heterogeneous transaction graphs encoding structural and temporal
information, enabling detection of both known fraud patterns and novel anomalies. Experimental evaluations on real-
world datasets demonstrate superior performance compared to traditional machine learning and deep learning
baselines, with Fl-scores reaching 0.947 and AUC-ROC values exceeding 0.985. The results confirm the
effectiveness of graph-based representation learning for addressing imbalanced fraud detection while maintaining
low false positive rates.
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1. Introduction
1.1. Background and Motivation
1.1.1. The Growing Challenge of Financial Fraud

The rapid digitization of financial services has fundamentally transformed payment ecosystems while creating
new vulnerabilities for fraudulent activities. Digital payment volumes have surged dramatically, with global
transaction values exceeding $6.7 trillion annually. This exponential growth has been accompanied by
increasingly sophisticated fraud schemes exploiting system vulnerabilities through coordinated attacks,
identity theft, and social engineering. Modern fraud networks operate across multiple platforms and
jurisdictions, making detection increasingly complex for financial institutions. Large-scale financial datasets
for graph anomaly detection have become essential for developing and evaluating advanced fraud detection
approaches[1].

1.1.2. Economic Impact and Industry Demands

The economic consequences of financial fraud extend beyond direct monetary losses, encompassing
reputational damage, regulatory penalties, and operational costs. Global fraud losses reached approximately
$32 billion in 2023, representing a 15% increase from the previous year. Financial institutions allocate billions
annually toward frau(}) revention technologies, yet fraud rates continue escalating. Regulatory frameworks
mandate stricter fraud prevention measures, with non-compliance resulting in significant penalties.
Comprehensive reviews of graph neural networks for financial fraud detection highlight the transformative
potential of these approachesError! Reference source not found..

1.1.3. Limitations of Traditional Detection Methods

Conventional fraud detection systems rely on rule-based engines and threshold-based alerts that struggle to
capture complex fraud patterns. Rule-based systems require extensive manual maintenance and become brittle
as fraud tactics evolve. Statistical methods provide improvements but remain limited in modeling intricate
relationships within transaction networks. Traditional machine learning algorithms treat transactions as
independent observations, ignoring rich relational structure inherent in financial networks. The severe class
imbalance characteristic of fraud detection tasks further compounds these limitations, with fraudulent
transactions typically representing less than 1% of total volume.
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1.2. Research Gap and Objectives
1.2.1. Challenges in Current Al-based Fraud Detection

Recent advances in deep learning have introduced powerful techniques for fraud detection, including recurrent
neural networks for sequential pattern modeling. These approaches have demonstrated improved performance
but continue facing fundamental challenges. Deep learning models require extensive labeled training data,
particularly scarce for emerging fraud patterns. The black-box nature of deep neural networks raises concerns
regarding model interpretability and regulatory compliance. Systematic reviews have identified critical
challenges in applying graph neural networks to financial fraud detection, including scalability limitations and
the need for specialize(% architectures[2].

1.2.2. Problem Statement and Research Questions

This research addresses how to effectively leverage graph-structured data and relational information for
enhanced fraud detection and anomaly identification in énancial transactions. The primary research objectives
examine whether graph-based representation learning can capture complex fraud patterns more effectively
than traditional feature engineering approaches. The investigation explores optimal strategies for constructing
transaction graphs that preserve critical relational information while remaining computationally tractable for
real-time processing requirements.

1.3. Contributions
1.3.1. Key Contributions of This Work

This paper presents a graph-based representation learning framework specifically designed for financial fraud
and anomaly transaction detection. The primary contribution lies in developing a heterogeneous transaction
graph construction methodology that effectively captures multi-relational patterns between cardholders,
merchants, and transaction attributes. The proposed approach introduces a novel node feature representation
scheme combining transaction-level features with aggregated neighborhood statistics. The research
demonstrates the effectiveness of specialized Graph Neural Network architectures tailored for imbalanced
fraud detection tasks, incorporating adaptive sampling strategies and custom loss functions. The experimental
evaluation provides comprehensive performance analysis across multiple real-world datasets, establishing
new benchmark results for graph-based fraud detection approaches.

2. Related Work and Literature Review

2.1. Traditional Fraud Detection Approaches
2.1.1. Rule-based Detection Methods

Rule-based fraud detection systems represent the earliest automated approaches to identifying suspicious
transactions, operating through expert-defined logic encoding known fraudp patterns. These systems implement
threshold-based rules examining transaction amounts, geographic locations, merchant categories, and
temporal patterns. Rules accumulate through years of operational experience, forming complex decision trees
triggering alerts based on specific characteristics. The primary limitation manifests in their inability to adapt
to evolving fraud tactics without manual intervention, introducing significant latency between pattern
emergence and detection capability.

2.1.2. Statistical Analysis Techniques

Statistical methods leverage probability distributions and outlier detection algorithms to identify transactions
deviating significantly from expected patterns. Classical approaches include Z-score analysis, Mahalanobis
distance calculations, and clustering algorithms. Bayesian networks provide probabilistic frameworks for
reasoning about fraud likelihood based on transaction attributes and historical patterns. The statistical
foundation provides theoretical guarantees regarding false positive rates and detection thresholds, enabling
principled optimization of system parameters.

2.1.3. Limitations and Challenges

Traditional approaches face fundamental challenges in capturing complex, multivariate relationships
characterizing sophisticated fraud schemes. Rule-based and statistical methods typically analyze transactions
independently, ignoring valuable contextual information encoded in transaction networks. The severe class
imbalance inherent in fraud detection poses significant challenges, with fraudulent transactions typically
representing 0.1% to 1% of total volume. Standard performance metrics become misleading in imbalanced
scenarios, requiring specialized evaluation frameworks emphasizing precision, recall, and area under
precision-recall curves.
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2.2. Machine Learning and Deep Learning Methods
2.2.1. Classical Machine Learning Algorithms

Machine learning approaches have substantially advanced fraud detection capabilities by automatically
learning patterns from historical transaction data. Decision tree ensembles including Random Forests and
Gradient Boosting Machines have demonstrated strong performance in fraud detection. Support Vector
Machines enable non-linear decision boundaries in high-dimensional feature spaces. Comprehensive reviews
of deep learning algorithms for credit card fraud detection have identified key challenges including data
imbalance, concept drift, and computational complexity[3].

2.2.2. Deep Neural Networks for Fraud Detection

Deep learning architectures have revolutionized fraud detection through their ability to automatically extract
hierarchical feature representations from raw transaction data. Recurrent Neural Networks model sequential
dependencies in transaction histories, capturing temporal dynamics crucial for detecting behavioral anomalies.
Structure-aware hierarchical recurrent neural networks have demonstrated effectiveness in detecting online
credit payment fraud by modeling complex transaction sequence patterns*. Autoencoder architectures
provide unsupervised approaches to anomaly detection by learning compressed representations of normal
transaction patterns. Semi-supervised credit card fraud detection methods using attribute-driven graph
representations have shown promise in leveraging both labeled fraud cases and unlabeled normal
transactions|5].

2.2.3. Ensemble Learning Approaches

Ensemble methods combine predictions from multiple models to achieve superior performance and robustness
compared to individual classifiers. Bagging approaches train multiple models on bootstrap samples of training
data, reducing variance through prediction averaging. Spatio-temporal attention-based neural networks have
enhanced fraud detection by combining spatial feature learning with temporal pattern modeling through
ensemble architectures[6]. Dynamic ensemble selection adapts model weights based on transaction contexts
and recent performance trends.

2.3. Graph-based Learning for Financial Applications
2.3.1. Graph Neural Networks in Fraud Detection

Graph Neural Networks have emerged as powerful tools for fraud detection by explicitly modeling the
relational structure of financial transaction networks. GNN architectures propagate information between
connected nodes through message passing mechanisms, enabling each node to aggregate features from its
neighborhood. Interleaved sequence RNNs have demonstrated effectiveness in fraud detection by combining
sequential pattern modeling with graph-based relationship analysis[7].

2.3.2. Recent Advances in Graph Representation Learning

Recent developments in graph representation learning have introduced sophisticated techniques for capturing
complex structural patterns 1n financial networks. Heterogeneous graph neural networks handle multiple node
and edge types, naturally accommodating diverse entity types present in financial transaction networks. Multi-
view attributed heterogeneous information networks have shown promise for financial defaulter detection by
integrating diverse relationship types and attribute information[8].

2.3.3. Research Gaps and Opportunities

DesEite substantial progress in graph-based fraud detection, significant opportunities remain for

methodological advancement. Current approaches often struggle with scalability to billion-edge transaction

networks characteristic of large financial institutions. Interpretability remains a critical challenge for graph-

based models where regulatory requirements mandate explainable decisions. The development of inherentl

iinterpyetable graph-based models maintaining competitive performance represents an important researcﬁ
rection.

3. Proposed Methodology

3.1. Data Preprocessing and Feature Engineering
3.1.1. Data Collection and Cleaning

The methodology begins with comprehensive data collection from multiple financial transaction sources
including point-of-sale systems, online payment gateways, and mobile banking applications. Raw transaction
records contain essential attributes such as transaction amounts, timestamps, merchant identifiers, cardholder
information, geographic locations, and device fingerprints. Data quality issues require systematic cleaning
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procedures to handle missing values, inconsistent encodings, and duplicate records. Enhancement of fraud
detection in banking with deep learning approaches using graph neural networks and autoencoders
demonstrates the importance of rigorous data preprocessing for model performance[9].

3.1.2. Feature Extraction from Transaction Data

Feature engineering transforms raw transaction records into rich representations capturing behavioral patterns
and risk indicators. Temporal features encode transaction timing through multiple scales including hour-of-
day, day-of-week, and time-since-last-transaction calculations. Velocity features quantify transaction
frequency within rolling time windows, detecting sudden bursts of activity characteristic of compromised
accounts. Geographic geatures capture location-l%ased risk signals throu K distance calculations between
transaction locations and registered addresses. The feature extraction pipeline generates over 150 engineered
features per transaction, encompassing raw attributes, derived statistics, and aggregated behavioral indicators.

Table 1: Transaction Feature Categories and Descriptions

Feature Number of

Category Features Description Example Features
Temporal 73 Time-based patterns and  Hour of day, day of week, transaction
Features intervals frequency
Amount 31 Transaction value Amount, amount-to-limit ratio, deviation
Features characteristics from average
Geographic 18 Location-based Distance from home, velocity between
Features indicators locations, country risk score
Merchant 27 Merchant-related Merchant category, historical fraud rate,
Features attributes chargeback ratio

. Device and channel Device fingerprint, browser type, mobile
Device Features 19 information vs desktop
Behavioral 34 Customer behavior Transaction count last 24h, spend pattern
Features patterns deviation

3.1.3. Handling Class Imbalance

The extreme class imbalance characteristic of fraud detection datasets requires specialized handling to prevent
model bias toward the majority class. Fraudulent transactions typically represent 0.1% to 1% of total
transaction volume, creating optimization challenges for standard loss functions. The methodology
implements multiple complementary strategies to address class imbalance throughout the modeling pipeline.
Sample weighting assigns higher costs to misclassification of fraud instances. Synthetic oversampling
techniques generate additional fraud examples through interpolation strategies. Anomaly detection approaches
using VAE-transformer architectures have demonstrated effectiveness in handling imbalanced datasets
through unsupervised representation learning[10]. Focal loss functions down-weight easy-to-classify
examples, focusing optimization on hard negative cases.

Table 2: Class Imbalance Handling Techniques and Parameters

Technique Implementation Parameters Impact on Dataset
Sample Weighting Class-based cost matrix Evrgllé%:v Tight: 100, Normal Eg;g%g rfre:)ucll%
SNMOTE g Searesnclehbos s, Oversampleratio 03 Fridsamples nereased
Focal Loss Eﬁi{%ﬁeterimd loss v=2.0, 0=0.25 Focus on hard examples

Random majority class
removal

Dataset size reduced by

Undersampling Undersample ratio: 0.1 899

COMPUTING INNOVATIONS AND APPLICATIONS
ISSN: 3068-5516 156



3.2. Graph Construction and Representation Learning
3.2.1. Transaction Graph Construction

The transaction graph construction process transforms temporal transaction records into a heterogeneous
network capturing multi-relational patterns between financial entities. The graph schema defines multiple
node types including cardholders, merchants, devices, and geographic locations. Edge types represent
different relationship categories such as cardholder-to-mercl%ant transactions, device-to-cardholder
associations, and merchant-to-location connections. The graph construction algorithm processes transactions
chronologically, incrementally building the network structure as new transactions arrive. Node creation
procedures instantiate new vertices for previously unseen entities while updating attributes for existing nodes.

Figure 1: Heterogeneous Transaction Graph Architecture
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Figure 1 presents the heterogeneous transaction graph structure employed in the proposed methodology. The
visualization displays multiple node types represented by different colors and shapes. Cardholder nodes (blue
circles) form the central entities, connected to merchant nodes (green squares) through transaction edges (solid
lines). Device nodes (orange diamonds) link to cardholders through usage relationships (dashed lines).
Geographic location nodes (purple hexagons) connect to both merc%ants and transactions. Edge thickness
represents transaction volume, while edge colors encode transaction approval status (approved: green,
declined: red). The network topology reveals characteristic patterns inc{)uding isolated fraud nodes with
unusual connection patterns and densely connected legitimate customer subgraphs. The visualization
demonstrates the complex relational structure captured by the graph representation.

3.2.2. Node Feature Representation

Node feature representations combine intrinsic entity attributes with neighborhood-aggregated statistics
capturing local graph structure. Cardholder nodes encode demographic information, account characteristics,
and historical transaction statistics. Merchant nodes contain business attributes including merchant category
codes, registration information, and aggregated transaction statistics. The feature representation scheme
implements multi-level aggregation to incorporate information from extended neighborhoods beyond
immediate connections. First-order features aggregate statistics from direct neighbors, computing metrics such
as average transaction amounts and fraud rates among connected entities. Second-orcﬁer features extend
aggregation to two-hop neighborhoods, capturing broader network context.

dv =[x || "{AGG} 1({xu |u € NW)}) || "{AGG}2({x.w |u € N2(»)})]
where d_v represents the feature vector for node v, x_v denotes intrinsic features, N(v) indicates the immediate

neighborhood, N_2(v) represents the two-hop neighborhood, and AGG_1, AGG_2 are aggregation functions
operating over neighbor features.
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3.2.3. Graph Neural Network Architecture

The Graph Neural Network architecture implements a multi-layer message passing framework that iteratively
updates node representations through neighborhood aggregation. Each layer performs three key operations:
message generation, message aggregation, and node representation update. The architecture incorporates
attention mechanisms that learn the relative importance of different neighbor relationships during aggregation.
Multi-head attention enables the model to capture diverse relationship patterns through parallel attention
computations. Layer normalization and residual connections stabilize training and enab%e dre)ep architectures
capable of capturing long-range dependencies.

h§l+”=c<w<l>-h§’)+ > affi-hﬁ”)

UEN (v)

where h v~(I) represents the hidden state of node v at layer 1, W”(l) denotes learnable weight matrices,
a_{vu}”(l) indicates attention coefficients between nodes v and u, and ¢ represents the activation function.

Table 3: Graph Neural Network Architecture Specifications

Component  Configuration Parameters Description

Node features + Edge . Processes raw node and edge
Input Layer ¢ ¢ s Input dim: 206 features
GNN Layer  Graph attention Hidden dim: 128, . .
1 y o on\r/) olution Heads: 8 First message passing layer
g}NN Layer CGOrSE;I(}liggtrlltlon Eldden dim: 64, Heads: Second message passing layer
GNN L Graph attenti Hidden dim: 32, Heads: . .
3 ayer o Orflls OlﬁtigIIll ton 21 ch dim €ads- Third message passing layer
Global Graph-level ti A tes nod tati
Pooling raph-level aggregation - ggregates node representations

Output Layer Binary classification Output dim: 2 Fraud probability prediction

3.3. Model Training and Optimization
3.3.1. Loss Function Design

The loss function incorporates multiple objectives addressing the unique requirements of fraud detection
including class imbalance, false positive costs, and model interpretability. The primary objective implements
focal loss that down-weights easy examples and focuses learning on challenging fraud instances.

Lfocal(Pt) = —a;(1 —p)Y log(py)

where p_t represents the predicted probability for the true class, o_t balances positive and negative examples,
and y controls the down-weighting rate for well-classified examples. The multi-objective loss function
combines focal loss with auxiliary objectives promoting graph structure preservation and representation
quality.

3.3.2. Training Strategy and Hyperparameter Tuning

The training strategy implements mini-batch gradient descent with graph sampling techniques to enable
efficient learning on large transaction networks. Neighborhood sampling limits the receptive field size during
message passing, controlling computational complexity while maintaining representative neighborhood
information. Learning rate scheduling implements warmup followed by cosine annealing to stabilize early
training and fine-tune model parameters. Hyperparameter optimization employs Ba?/esian optimization over
validation set performance to identify optimal configurations. The search space includes graph construction
parameters, architecture hyperparameters, and training hyperparameters. The selected configuration
maximizes F1-score while maintaining false positive rates within business-specified thresholds.

3.3.3. Model Integration and Ensemble Techniques

The final detection system integrates multiple model variants through ensemble approaches that combine
complementary strengths. Base models include GNN variants with different architectures, graph construction
strategies, and feature representations. The ensemble construction employs stacking meta-learners that learn
optimal combination weights for base model predictions. Dynamic model selection adapts ensemble weights
based on transaction characteristics and recent performance trends. The ensemble framework includes fallback
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mechanisms that invoke alternative detection paths when primary models encounter processing errors or high
uncertainty scenarios.

4. Experimental Results and Analysis

4.1. Experimental Setup
4.1.1. Datasets and Evaluation Protocol

The experimental evaluation employs three real-world financial transaction datasets spanning diverse payment
channels and geographic regions. The primary dataset contains 6.3 million credit card transactions collected
over a six-month period from European cardholders, with 11,452 confirmed fraud instances representing
0.18% of total volume. The second dataset encompasses 2.8 million e-commerce transactions exhibiting
higher fraud rates at 1.2%. The third dataset consists of 4.1 million mobile payment transactions with
associated device fingerprints. Dataset partitioning follows temporal split protocols that preserve the
chronological ordering of transactions. Performance evaluation empﬁ)ys multiple metrics including precision,
recall, Fl-score, area under ROC curve (AUC-ROC), and area under precision-recall curve (AUC-PR). The
evaluation framework computes metrics at various decision thresholds to characterize the complete precision-
recall tradeoff[11].

Table 4: Dataset Statistics and Characteristics

R ctons ey Rael Bme, Tamaeon
European Credit Cards 6,342,187 11,452 0.18% 6 months POS + Online
E-commerce Payments 2,814,963 33,780 1.20% 4 months Online only
Mobile Payments 4,127,558 8,255 0.20% 5 months Mobile app
Combined Dataset 13,284,708 53,487 0.40% Varies Multi-channel

4.1.2. Baseline Methods for Comparison

The experimental comparison includes diverse baseline methods representing traditional approaches, classical
machine learning, and state-of-the-art deep learning techniques. Rule-based baseline implements expert-
defined detection rules capturing known fraud patterns. Logistic regression with engineered features provides
a linear modeling baseline. Random Forest ensembles represent classical machine learning approaches.
Gradient Boosting Machines employ XGBoost implementation optimized for imbalanced classification. Deep
learning baselines include Multi-Layer Perceptrons, LSTM networks modeling transaction sequences, and
Autoencoder-based anomaly detection. Graph Convolutional Network baseline implements standard graph
convolution operations without attention mechanisms. The comparison establishes performance
improvements attributable to the proposed methodology's specialized components including graph attention,
heterogeneous edge types, and imbalance handling strategies[12].

4.1.3. Implementation Details

The implementation employs PyTorch Geometric framework for graph neural network development. Graph
construction pipelines utilize Apache Spark for distributed processing of large transaction datasets. Moc{)el
training executes on NVIDIA V100 GPUs with 32GB memory, enabling batch sizes of 512 transactions.
Training proceeds for 100 epochs with early stopping based on validation set AUC-PR. Hyperparameter
optimization explores 200 configurations through Bayesian optimization using the Optuna framework. The
search identifies optimal configurations including learning rate 0.001, dropout rate 0.3, Eidden dimension 128,
and attention heads 8.

4.2. Performance Evaluation
4.2.1. Overall Performance Comparison

The proposed graph-based approach demonstrates substantial performance improvements compared to all
baseline methods across multiple evaluation metrics. The GNN model achieves F1-score of 0.947 on the
primary European credit card dataset, representing 8.3% improvement over the best-performing baseline.
AUC-ROC values reach 0.985, indicating exceﬁent discrimination capability between fraudulent and
legitimate transactions. AUC-PR scores of 0.892 confirm strong performance on the imbalanced detection
task. The performance advantages prove particularly pronounced for detecting novel fraud patterns absent
from training data. The graph-based approach identifies 89.3% of previously unseen fraud schemes compared
to 67.4% detection rate for the best baseline method. False positive rates remain low at 0.8% for the operating
threshold selected to achieve 95% recall, meeting business requirements for production deployment[13].
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Table 5: Performance Comparison Across Methods and Datasets

Method

European CC (F1 / E-commerce (F1 / Mobile Payments (F1 / Average

AUC-ROC) AUC-ROC) AUC-ROC) Rank
Rule-based 0.62370.812 0.691/0.834 0.64770.823 8.0
Iﬁ‘ééii?é’ion 0.742 / 0.887 0.768 / 0.894 0.756 / 0.891 7.0
Random Forest  0.831/0.941 0.847/0.948 0.839/0.944 5.0
XGBoost 0.874/0.958 0.886 /0.962 0.881/0.961 3.0
MLP 0.798/0.916 0.812/0.923 0.807/0.920 6.0
LSTM 0.856 /0.947 0.869/0.951 0.863/0.949 4.0
Autoencoder  0.779 / 0.902 0.794 /0.909 0.788 /0.906 6.5
GCN Baseline  0.891/0.967 0.903/0.971 0.898 /0.969 2.0
Proposed GNN  0.947 / 0.985 0.954 /0.988 0.951/0.987 1.0

4.2.2. Analysis of Different Fraud Types

Performance analysis across fraud typologies reveals varying detection effectiveness for different attack
schemes and fraud patterns. Account talgeover fraud exhibits highest detection rates at 96.7% recall with 93.2%
precision, benefiting from distinctive network patterns created when fraudsters access compromised accounts.
Card testing fraud proves challenging due to small transaction amounts, achieving 84.3% recall with 87.6%
precision. Synthetic identity fraud demonstrates moderate detection rates at 88.9% recall, with graph features
capturing unusual network formation patterns. Friendly fraud and first-party fraud present the greatest
challenges, achieving 76.4% recall due to behavioral similarities with legitimate transactions[14].

Figure 2: Performance Analysis Across Fraud Categories
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Figure 2 illustrates the comparative performance analysis across six major fraud categories. The visualization
employs a grouped bar chart with fraud tfrpes on the x-axis and performance metrics on the y-axis. Three bars
per fraud category represent Precision (blue), Recall (orange), and F1-score (green). Account Takeover shows
the tallest bars with precision 0.932, recall 0.967, and F1-score 0.949. Card Not Present fraud displays bars at
precision 0.891, recall 0.902, F1-score 0.896. Synthetic Identity exhibits precision 0.876, recalrl) 0.889, F1-
score 0.882. Card Testing shows precision 0.876, recall 0.843, F1-score 0.859. Lost/Stolen Card presents
precision 0.905, recall 0.921, Fl-score 0.913. Friendly Fraud demonstrates the shortest bars with precision
0.798, recall 0.764, F1-score 0.780. Error bars indicate 95% confidence intervals computed through bootstrap
resampling. A horizontal reference line at 0.850 marks the business target threshold.
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4.2.3. Statistical Significance Testing

Statistical significance testing confirms that observed performance improvements exceed random variation
and establish genuine algorithmic advantages. Paired t-tests comparing F1l-scores across 10 random train-
validation splits achieve p-values below 0.001 for all baseline comparisons, indicating high statistical
significance. McNemar's test for paired binary classifiers evaluates prediction agreement between the
proposed method and baselines, revealing statistically significant differences (p < 0.01) for all comparisons.
Bootstrap confidence intervals computed through 1000 resampling iterations establish 95% confidence that
F1-score improvements exceed 5 percentage points compared to the best baseline.

4.3. Visual Analysis and Ablation Study
4.3.1. ROC and Precision-Recall Curves

Receiver Operating Characteristic curves demonstrate the discrimination capability of different methods
across all possible decision thresholds. The proposed GNN model exhibits superior performance with the ROC
curve positioned closest to the top-left corner, indicating high true positive rates maintained across all false
positive rates. Precision-Recall curves provide more informative evaluation for the imbalanced fraud detection
task. The proposed method maintains high precision above 0.85 across recall levels from 0.7 to 0.95,
demonstrating effective handling of class imbalance. Baseline methods exhibit steeper precision degradation
as recall increases.

Figure 3: ROC and Precision-Recall Curve Comparison
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Figure 3 presents side-by-side comparison of ROC curves (left panel) and Precision-Recall curves (right
panel) for all evaluated methods. The left panel displays True Positive Rate (0 to 1) on the y-axis versus False
Positive Rate (0 to 1) on the x-axis. Nine curves representing different methods overlay each other, with the
proposed GNN method (solid red line, thickness 3) positioned closest to the top-left corner. XGBoost (dashed
blue line) and LSTM (dotted green line) follow as the next best performers. AUC values appear in the legend
for each method, ranging from 0.812 (rule-based) to 0.985 (proposed GNN). The right panel shows Precision
(0 to 1) on the y-axis versus Recall (0 to 1) on the x-axis. The proposed GNN method maintains precision
above 0.85 across recall range 0.6 to 0.95, while baseline methods show steeper degradation. Shaded
confidence regions surround each curve.

4.3.2. Feature Importance and Model Interpretability

Feature importance analysis identifies the most discriminative attributes for fraud detection through multiple
complementary approaches. Gradient-based feature attribution computes the sensitivity of model predictions
to input feature perturbations, ranking features by their average absolute gradients. Transaction amount, time
since last transaction, and merchant fraud rate emerge as the three most important features. Graph attention
weight analysis reveals that connections to merchants with high historical fraud rates receive substantially
higher attention weights during message aggregation. Layer-wise relevance propagation traces prediction
contributions backward through the network architecture, decomposing final fraud scores into constituent
feature contributions.

COMPUTING INNOVATIONS AND APPLICATIONS
ISSN: 3068-5516 161



4.3.3. Component Contribution Analysis

Ablation studies systematically evaluate the contribution of individual methodology components by
measuring performance degradation when components are removed. Removing attention mechanisms and
reverting to uniform neighbor aggregation reduces Fl-score by 6.2 percentage points. Replacing
heterogeneous graph structure with homogeneous graphs that ignore edge types degrades performance by 4.7
percentage points. Ablating the specialized imbalance handling techniques including focal loss and sample
weighting reduces recall by 11.3 percentage points while improving precision by 3.1 points. Removing
temporal information and treating the transaction graph as static reduces F1-score by 8.9 percentage points.

5. Discussion and Conclusion

5.1. Interpretation and Practical Implications
5.1.1. Key Findings and Performance Analysis

The experimental results establish that graph-based representation learning provides substantial advantages
for financial fraud detection compared to traditional approaches and standard deep learning methods. The
proposed methodology achieves state-of-the-art performance across multiple datasets and fraud typologies,
demonstrating robust generalization. The F1-score improvements of 5 to 8 percentage points translate to
significant operational value when deployed at scale, potentially preventing millions of dollars in fraud losses
annually. The performance analysis reveals that graph structure contributes crucial information beyond
transaction-level features, particularly for detecting coordinated fraud schemes and account takeover attacks.

5.1.2. Real-world Deployment Considerations

Successful production deployment of graph-based fraud detection systems requires careful attention to
multiple operational considerations beyond model performance metrics. The dynamic nature of transaction
networks necessitates efficient graph updating mechanisms that incorporate new transactions without
requiring complete graph reconstruction. Model retraining schedules must balance the need to adapt to
evolving fraud patterns against computational costs and operational risks. Integration with existing fraud
prevention workflows requires careful consideration of alert routing, investigation prioritization, and analyst
feedback incorporation. Machine learning predictions augment rather than replace human expertise.

5.2. Limitations and Challenges
5.2.1. Computational Complexity Analysis

Graph neural network architectures introduce substantial computational overhead compared to traditional
fraud detection approaches. The message passing operations required for neighborhood aggregation scale with
graph size and average node degree, creating potential bottlenecks for real-time processing. The computational
complexity grows as O(|[E| x d x L) where E represents edge count, d denotes feature dimensions, and L
indicates layer count. Large financial institutions processing millions of daily transactions face significant
infrastructure requirements for graph-based fraud dlétection dgeployrnent.

5.2.2. Privacy and Security Concerns

Graph-based fraud detection systems aggregate information across multiple customers and transactions,
potentially creating privacy risks if not properly managed. The graph structure inherently reveals relationship
patterns between cardholders and merchants that may be considered sensitive information. Regulatory
frameworks including GDPR impose strict requirements on personal data processing and storage. Adversarial
attacks represent emerging threats to machine learning fraud detection systems. Sophisticated fraudsters may
probe detection systems to identify weaknesses and develop evasion strategies.

5.2.3. Adaptability to Evolving Fraud Patterns

Financial fraud continuously evolves as attackers develop new techniques to circumvent detection systems.
The arms race between fraud detection and fraud perpetration creates ongoing challenges for maintaining
model effectiveness. Graph neural networks learn patterns from historical training data but may not generalize
to fundamentally new attack vectors. Transfer learning approaches leveraging pre-trained graph
representations provide partial solutions. Meta-learning techniques that optimize for fast adaptation to new
fraud types show promise. Online learning frameworks update models continuously based on streaming
transaction data.
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5.3. Conclusion and Future Work
5.3.1. Summary of Contributions

This research presents a comprehensive graph-based representation learning framework for financial fraud
and anomaly transaction detection. The methodology introduces heterogeneous transaction graph construction
strategies that capture multi-relational patterns between financial entities. The specialized Graph Neural
Network architecture incorporates attention mechanisms, imbalance handling techniques, and ensemble
approaches tailored for fraud detection requirements. Extensive experimental evaluation demonstrates
substantial performance improvements compared to traditional machine learning and deep learning baselines.
The findings advance both theoretical understanding of graph-based learning %or financial applications and
practical deployment of advanced fraud detection technologies.

5.3.2. Future Research Directions

Several promising directions emerge for extending and improving graph-based fraud detection methodologies.
Temporal graph neural networks that explicitly model dynamic network evolution could better caﬁture fraud
pattern changes over time. Causal inference techniques applied to transaction graphs might identify
intervention opportunities for fraud prevention rather than post-transaction detection. Federated learning
approaches could enable collaborative fraud detection across financial institutions while preserving data
privacy. Explainable graph neural networks remain an important research frontier for satistying regulatory
requirements. Techniques combining neural and symbolic reasoning might leverage domain expert knowledge
more effectively while maintaining adaptive learning capabilities.
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