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Abstract

The increasing adoption of artificial intelligence in financial risk management has raised concerns about the
transparency and interpretability of stress testing outcomes. This paper presents a feature attribution-based
framework for explaining market risk stress scenarios through SHAP (SHapley Additive exPlanations) analysis. The
proposed approach addresses the critical gap between advanced scenario generation techniques and regulatory
requirements for explainable risk assessments. By decomposing portfolio loss predictions into individual risk factor
contributions, the methodology enables risk managers to validate whether generated scenarios align with established
economic relationships. Experimental results using Federal Reserve stress test data demonstrate that the attribution
framework achieves 87.3% consistency with known financial correlations during crisis periods. The validation
mechanism successfully identifies spurious risk factors and quantifies the relative importance of interest rates, equity
volatility, and credit spreads across different stress intensities. Comparative analysis against traditional sensitivity
analysis shows 34.2% improvement in attribution stability and 28.6% better alignment with domain expert
assessments. The framework provides actionable insights for regulatory compliance while maintaining
computational efficiency suitable for real-time risk monitoring applications.
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Introduction

1.1 Background of Market Risk Stress Testing

Financial institutions operate within complex risk environments where market volatilities, credit
deteriorations, and liquidity constraints can rapidly compound into systemic threats. Stress testing has evolved
from simple sensitivity analyses into sophisticated frameworks that evaluate institutional resilience under
adverse scenarios [*’)7 Regulatory bodies worldwide mandate regular stress testing exercises to ensure
adequate capital buffers and risk management practices. The Dodd-Frank Act established the Comprehensive
Capital Analysis and Review process, requiring large banking organizations to demonstrate their ability to
withstand severe economic downturns “¢!. European banking regulations similarly enforce stringent stress
testing requirements through the European Banking Authority's supervisory frameworks ©!1.

Traditional stress testing methodologies rely predominantly on historical scenarios or expert-designed
hypothetical shocks. Historical simulation approaches replay past crisis events, assuming that future stress
episodes will exhibit similar characteristics to observed disruptions [®*. Parametric methods construct
scenarios based on statistical distributions fitted to market data, applying predetermined shock magnitudes to
risk factors (], These conventional techniques face inherent limitations in capturing tail events, fail to account
for regime shifts in market dynamics, and struggle to represent emerging risk interconnections (%1,

The proliferation of machine learning techniques in financial analytics has introduced novel capabilities for
scenario generation and risk assessment. Advanced algorithms can identify complex patterns in high-
dimensional market data, generate synthetic stress scenarios that preserve statistical properties of tail
distributions, and adapt to evolving market conditions *?!. Despite these technical advances, the adoption of
Al-driven stress testing faces significant barriers related to interpretability and regulatory acceptance (61],
Financial supervisors require transparent explanations of why specific scenarios produce particular loss
estimates, demanding that institutions demonstrate the economic plausibility of their risk assessments [,

1.2 Research Motivation and Challenges

A. Regulatory Requirements for Explainability

Financial regulators increasingly recognize that algorithmic opacity poses risks to financial stability and
consumer protection. The Basel Committee on Banking Supervision emphasizes that institutions must
understand and explain their risk measurement approaches, particularly when employing complex
computational methods [, The European Central Bank's guide on internal models stipulates that banks should
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provide clear documentation of modeling assumptions, validate results against economic intuition, and
demonstrate staff understanding of algorithmic outputs. United States banking supervisors evaluate whether
stress testing frameworks produce results that senior management and boards of directors can comprehend
and challenge [**.

Recent regulatory guidance explicitly addresses artificial intelligence applications in risk management. The
Federal Reserve's SR 11-7 guidance on model risk management requires institutions to validate that
quantitative methods produce conceptually sound and appropriately calibrated outcomes 2!, The Office of
the Comptroller of the Currency issued supplementary guidance highlighting that complex machine learnin

techniques must undergo enhanced validation procedures, including assessments of whether results align wit%
economic theory and market conventions [**. These regulatory expectations create substantial demand for
explainability techniques that bridge the gap between algorithmic sophistication and human interpretability.

B. Limitations of Current Approaches

Existing stress testing frameworks exhibit several critical deficiencies that hinder their effectiveness and
regulatory acceptance. Traditional sensitivity analyses evaluate risk factors in isolation, failing to capture
interaction effects and non-linear dependencies that characterize actual market stress events *°. Historical
scenarios become increasingly stale as market structures evolve, reducing their relevance for assessing
contemporary vulnerabilities ). Expert-designed hypothetical scenarios reflect individual judgment biases
and may overlook emerging threat vectors 1/,

Machine learning-enhanced scenario generation techniques have emerged as promising alternatives, offering
capabilities to synthesize novel stress scenarios from historical patterns 7). Generative adversarial networks
can produce synthetic market trajectories that preserve tail risk characteristics while exploring unexplored
regions of the scenario space [**. Deep learning architectures demonstrate superior performance in capturing
complex temporal dependencies and cross-asset correlations [*3. Despite these technical capabilities,
practitioners and regulators struggle to interpret why specific Al-generated scenarios produce particular loss
outcomes, understand which risi factors drive results, and validate whether scenarios reflect economically
plausible shock transmissions 2%/,

The explainability challenge manifests across multiple dimensions. Black-box algorithms provide limited
insight into their internal decision processes, complicating efforts to identify potential modeling errors or
biased assumptions [*). Risk managers cannot easily decompose aggregate port‘rlglio losses into contributions
from individual risk factors, hindering root cause analysis when scenarios produce unexpected results [1°],
Validation teams lack systematic frameworks for assessing whether Al-generated scenarios maintain fidelity
to established economic relationships and domain knowledge [**].

1.3 Research Contributions

This research addresses the explainability gap in Al-enhanced stress testing through a systematic feature
attribution framework built on Shapley value principles. The methodology decomposes scenario-driven
portfolio losses into additive contributions from individual risk factors, enabling transparent evaluation of
which market movements drive adverse outcomes. By computing Shapley values for each risk factor's
mar_%ina_ll c[(g)(r)l]tribution, the approach provides game-theoretic guarantees of fairness and consistency in
attribution ..

The primary contributions of this work include: a formalized problem statement that precisely defines the
stress scenario explainability challenge and establishes mathematical requirements for valid attribution
methods; a computational framework for efficiently calculating SHAP values across high-dimensional risk
factor spaces encountered in realistic portfolio stress testing applications; a validation protocol that
systematically evaluates whether attributed factor contributions align with established economic relationships,
empirical correlations, and domain expert knowledge; comprehensive experimental evaluation using Federal
Reserve stress test data demonstrating practical applicability and performance characteristics across multiple
crisis scenarios; comparative analysis quantifying improvements over baseline explainability techniques
including partial dependence plots, permutation importance, and traditional sensitivity analysis.

The proposed framework advances the state of practice by providing risk managers with actionable tools to
interpret Al-generated stress scenarios, enabling validators to systematically assess economic plausibility of
algorithmic outputs, and supporting regulatory compliance through transparent documentation of risk factor
impacts. The methodology maintains computational tractability while preserving theoretical guarantees,
making it suitable for integration into operational risk management workflows.

2. Related Work

2.1 Traditional Stress Testing Methodologies

A. Historical Simulation Approaches
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Historical simulation represents the most widely adopted stress testing methodology across financial
institutions. The approaclg replays actual market movements from past crisis periods, appgling observed risk
factor changes to current portfolio positions . Practitioners commonly select reference scenarios including
the 2008 financial crisis, 1998 Long-Term Capital Management collapse, 1987 stock market crash, and 2020
pandemic market disruption. The methodology's appeal stems from its simplicity, minimal distributional
assumptions, and direct interpretability 411,

Implementation typically involves identifying relevant historical stress periods, extracting risk factor changes
during these episodes, and applying pI’O{DOI’f[iOIlal. or absolute shocks to current market levels [43], Institutions
may implement multiple variations including direct historical replay preserving all observed correlations,
scaled historical scenarios adjusting shock magnitudes for current volatility environments, and rolling window
approaches periodically updating the reference crisis period 1.

B. Parametric Methods

Parametric stress testing constructs scenarios through statistical models that characterize risk factor behaviors
under adverse conditions. Practitioners fit probability distributions to historical data, calibrate correlation
structures, and generate scenarios by sampling from the tail regions of these distributions 2. Common
parametric approaches include multivariate normal distributions with tail-adjusted volatility parameters,
copula-based methods that separately model marginal distributions and dependence structures, and GARCH
specifications that incorporate volatility clustering and leverage effects ["!1.

The parametric framework offers flexibility to explore scenarios beyond historical experience, control stress
severity through quantile selection, and maintain internal consistency across related risk factors [
Limitations arise from distributional misspecification risks, difficulty capturing regime shifts, and sensitivity
to calibration periods '), Tail distributions prove particularly challenging to estimate accurately, as limited
extreme event observations provide unstable parameter estimates [*4],

2.2 AI-Enhanced Scenario Generation

Machine learning techniques have transformed scenario generation capabilities by enabling data-driven
discovery of complex risk patterns and synthesis of novel stress scenarios. Generative adversarial networks
learn to produce synthetic market trajectories that preserve statistical properties of training data while
exploring unobserved scenario spaces (>’ The generator network creates candidate scenarios while the
%ig?criminator evaluates authenticity, driving an adversarial training process that yields realistic synthetic data

Recent advances include conditional generation allowing scenario characteristics to be specified, temporal
modeling ca]pturing dynamics and autocorrelations, and tail-focused architectures emphasizing extreme value
accuracy "%, Deep learning approaches demonstrate particular strength in high-dimensional settings with
complex cross-asset dependencies [*8]. Recurrent neural networks and transformer architectures effectively
model temporal evolution of risk factors, capturing momentum effects and mean reversion patterns '],

Reinforcement learning provides an alternative paradigm where agents learn optimal scenario generation
policies through trial and error 7). The approach can incorporate domain constraints and regulatory
requirements directly into the learning objective, potentially yielding scenarios that balance statistical realism
with strategic stress testing goals [*). Despite technical sophistication, these Al methods face adoption barriers
[rzeol]ated to mterpretability, validation complexity, and regulatory skepticism regarding black-box algorithms

2.3 Explainability in Financial Risk Management

Explainable artificial intelligence has emerged as a critical research area addressing the interpretability
challenges of complex machine learning systems. SHAP represents a unified framework grounding
explanations in coalitional game theory through Shapley values "%!. The approach satisfies desirable properties
including local accuracy ensuring explanations faithfully represent model behavior, missingness correctly
attributing zero importance to absent features, and consistenca/ guaranteeing that increasing a feature's
marginal contribution never decreases its attributed importance %%,

Financial applications of explainability techniques span credit scoring, fraud detection, and algorithmic
trading 1. Institutions employ LIME for local interpretability through linear approximations, permutation
importance assessing feature relevance via performance degradation, and partial dependence plots visualizing
marginal effects [°*).”Attention mechanisms in deep learning architectures provide inherent interpretability by
revealing which inputs receive greatest weight 371,

Regulatory guidance increasingly references explainability requirements. The Federal Reserve's model risk
management framework emphasizes ongoing monitoring and validation, conceptual soundness assessment,
and outcomes analysis ['*]) European banlgdng supervision mandates that internal models demonstrate
transparency and staff understanding !¢, These regulatory pressures drive demand for principled
explainability methods applicable to production risk management systems 811,
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2.4 Research Gaps

Despite extensive literature on both Al-enhanced scenario generation and explainability techniques,
significant gaps persist at their intersection. Existing stress testing research predominantly focuses on
improving scenario realism and tail risk accuracy, giving limited attention to interpretability and validation
workflows 71, Explainability studies concentrate on 2;)rediction tasks like credit default classification, with
minimal exploration of scenario generation contexts *4],

Current attribution methods face challenges in high-dimensional financial applications where hundreds of risk
factors interact through complex dependencies '™, Computational complexity of exact Shapley value
calculation becomes prohibitive for realistic portfolio stress testing, requiring approximation strategies that
may sacrifice accuracy ). Validation protocols remain underdeveloped for assessing whether attributed risk
factor contributions reflect genuine economic relationships versus artifacts of model architecture 221,

Practitioners lack standardized frameworks for conducting systematic explainability assessments of stress
testing outputs. Ad hoc approaches dominate, with institutions developing proprietary validation procedures
that vary substantially across organizations !l This fragmentation %inders knowled%e accumulation,
complicates regulatory oversight, and creates barriers to adopting advanced Al techniques /). The research
presented in this paper directly addresses these gaps through a comprehensive attribution framework
specifically designed for market risk stress testing applications.

3. Methodology

3.1 Problem Formulation

The stress scenario explainability problem requires decomposing portfolio loss outcomes into interpretable
contributions from individual risk factors. Consider a portfo%o exposed to a set of market risk factors denoted
by the vector x = (X1, Xa, ..., Xa), Where each component represents a distinct risk factor such as interest rates,
equity prices, credit spreads, or foreign exchange rates. A stress scenario defines specific movements in these
risk factors, transforming the current state x° to a stressed state x”s. The portfolio valuation function V(x)
maps risk factor configurations to portfolio values, enabling loss calculation as L = V(x°) - V(x”s).

The attribution challenge centers on identifying the contribution ¢; of each risk factor i to the total loss L such
that the sum of contributions equals the aggregate loss while individual attributions reflect the marginal impact
of each factor. Traditional sensitivity analysis approaches compute partial derivatives 0V/0xi, measuring
infinitesimal changes around the current state. These gradient-based methods fail to properly handle discrete
shock scenarios, 1gnore interaction effects between risk factors, and provide unstab{)e attributions when
valuation functions exhibit non-linearities.

The Shapley value framework from cooperative game theory offers a principled solution 2!, Risk factors are
treated as players in a coalitional game where the value function measures portfolio loss for any subset of
shocked factors. The Shapley value ¢; for factor i represents its average marginal contribution across all
possible orderings of factor inclusion. Formally, ;=% SSN\{i} [|S|!(n-|S|-1)!/n!] x [V(SU{i}) - V(S)], where
S ranges over all subsets of factors excluding 1, and the summation weights each marginal contribution by the
probability of observing that particular coalition size.

This formulation provides theoretical guarantees critical for financial applications. Efficiency ensures the sum
of Shapley values equals the total loss being explained. Symmetry guarantees that factors making identical
contributions receive identical attributions. Additivity permits decomposition of complex portfolios into
simpler components. Null player property correctly assigns zero attribution to factors that generate no
marginal impact. These pro?erties establish Shapley values as the unique attribution method satisfying all
desirable fairness axioms 7,

3.2 Stress Scenario Generation Framework

A. Data Preprocessing and Feature Engineering

The attribution framework requires carefully constructed risk factor representations that balance granularity
with computational tractability. Market data undergoes standardization transformations to ensure comparable
scales across heterogeneous risk factors. Interest rate term structures are decomposed through principal
component anal¥sis, extracting level, slope, and curvature factors that capture the dominant modes of yield
curve variation 4, Equity market exposures aggregate to sector indices rather than individual securities,
reducing dimensionality while preserving systematic risk characteristics. Credit spreads are organized by
rating class and maturity bucket, reflecting typical portfolio management practices.

Temporal alignment procedures synchronize risk factors observed at different frequencies [*°!. Daily equity
returns, weekly credit spread changes, and monthly macroeconomic updates require interpolation and
forward-filling techniques to create consistent time series. Missing data handling emplogs multiple imputation
methods that preserve correlation structures and avoid introducing spurious patterns 71, The preprocessing
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pipeline generates a standardized risk factor matrix spanning ten years of historical observations,
encompassing multiple economic cycles and stress episodes.

Feature engineering constructs derived quantities that enhance scenario interpretability. Volatility measures
computed t%lrough rolling standard deviations provide context for shock magnitude assessment [38] Correlation
breakdowns flag periods when historical relationships deviate from normal regimes, signaling potential model
instability [*4. Technical indicators including momentum and mean reversion signals inform whether risk
factor movements represent continuation of trends or reversals [2!1. These engineered features augment raw
risk factors in the attribution analysis, enabling richer explanations of scenario dynamics.

B. Scenario Sampling Strategy

Generating representative stress scenarios requires balancing exploration of the risk factor space against
computational resource constraints. The framework employs stratified sampling to ensure coverage across
different stress severity levels and risk factor combinations ®!. Regulatory scenarios from Federa%Reserve
and European Banking Authority stress tests provide anchor points representing supervisory expectations [°/.
Historical episodes including the 2008 financial crisis, 2020 pandemic shock, and 2022 inflation surge
contribute empirically observed stress patterns "),

Synthetic scenario generation augments the historical and regulatory samples through conditional sampling
procedures [®®1. Given a specified stress severity target, measured by aggregate portfolio loss or VaR
exceedance, the algorithm searches the risk factor space for configurations that produce the target outcome
while maintaining realistic covariation patterns. Rejection sampling evaluates candidate scenarios against
multivariate distributional fits, discarding implausible combinations that violate established correlation
constraints 77, The resulting scenario library contains approximately five hundred distinct stress
configurations spanning mild, moderate, and severe categories.

Scenario diversity metrics assess whether the library adequately represents the range of potential stress
mechanisms. Coverage measures compute the proportion of risk factor space explored relative to historical
observations [, Redundancy metrics identify near-duplicate scenarios that provide minimal incremental
information [>¥, Balance statistics verify that scenarios span different quadrants of the multidimensional risk
factor space rather than clustering in spécific regions "2, These quality checks ensure that attribution analyses
capture comprehensive insights rather than arti%acts of limited scenario sampling.

3.3 SHAP-Based Attribution Analysis

A. Shapley Value Computation

Exact Shapley value calculation requires evaluating the valuation function for all 2» possible coalitions of risk
factors, creating exponential computational complexity infeasible for realistic portfolio applications with n >
20 factors. The framework implements keme{) SHAP, a sampling-based approximation that efficiently
estimates Shapley values through weighted linear regression (591" The approach generates random coalitions
by sampling binary masks indicating which factors are present versus absent, eva%uates portfolio loss for each
coalition, and fits a linear model where coefficients correspond to Shapley value estimates.

The coalition sampling procedure employs stratified sampling to ensure adequate representation of different
coalition sizes °¢!. Smaﬁ coalitions with few active factors provide information about individual risk factor
impacts. Large coalitions approaching the full factor set reveal interaction effects and conditioning
dependencies. The weighting scheme assigns higher importance to mid-sized coalitions where marginal
contribution measurements carry greatest statistical information. Convergence diagnostics monitor attribution
estimate stability as additional coalitions are sampled, terminating when standard errors fall below acceptable

thresholds [3°!,

Background data selection significantly influences Shaples?/ value estimates, as absent factors must be assigned
reference values representing their "missing" state (051 The framework employs multiple background
configurations spanning different market regimes to ensure robust attributions. Normal market conditions
grovide one baseline, while previous stress episodes offer alternative reference points reflecting factor

ehaviors during adverse environments. Averaging across multiple backgrounds yields attributions that
capture robust factor importance rather than artifacts of specific reference choices [,

B. Feature Contribution Quantification

The computed Shapley values decompose the portfolio loss into a baseline expectation plus additive
contributions from each risk factor. Formally, L = E[L] + Xi¢;, where E[L] represents expected loss under the
background distribution and ¢; quantifies factor i's attributed contribution. Positive Shapley values indicate
risk factors whose movements increase losses, while negative values correspond to factors providing offsetting
benefits. The magnitude of each attribution reflects its relative importance in driving the overall stress
outcome.
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Attribution aggregation enables hierarchical explanations at multiple granularity levels 4. Individual risk
factors roll up to asset class contributions, revealing whether equity, fixed income, or credit exposures
dominate the loss profile. Geographic segmentations attribute losses to regional factors, informing
international diversification strategies (741, Temporal decompositions track how factor importance evolyes
throughout the stress episode, distinguishing initial shock impacts from secondary propagation effects '/,
These multi-level explanations support diverse stakeholder needs from detailed analyst reviews to executive
summary presentations.

Statistical uncertainty quantification accompanies each attribution estimate [”1. Bootstrap resampling
generates confidence intervals around Shapley values, reflecting sampling variability in the approximation
procedure. Sensitivity analyses examine how attributions change under alternative background selections and
coalition sampling schemes. Stability metrics compare attributions computed from different random seeds,
flagging factors whose importance estimates exhilgit excessive variability [*21. These uncertainty measures
prevent over-interpretation of marginal differences and support rigorous validation assessments.

3.4 Validation Mechanism

The validation framework assesses whether attributed factor contributions align with established economic
relationships and domain expertise. Correlation consistency testing verifies that factors attributed with large
loss contributions exhibit appropriate directional relationships with portfolio exposures . Portfolios with
long equity positions shoul%pattribute losses to equity price declines rather than increases. Fixed income
portfolios sensitive to duration should attribute losses to interest rate rises. Violations of these basic
consistency checks flag potential attribution errors requiring investigation.

Cross-scenario coherence evaluates attribution stability across related stress configurations ?*!. Factors
important in severe stress scenarios should generally maintain relevance in moderate stress versions, with
magnitudes scaling proportionally to shock intensity. Abrupt changes in factor rankings between similar
scenarios suggest attribution instability or regime-dependent dynamics worthy of deeper analysis. Coherence
metrics quantify the rank correlation of factor importance across scenario families, targeting high values
indicating consistent factor roles %),

Domain expert validation solicits qualitative assessments from experienced risk managers regarding
attribution plausibility 51 Experts review the top-ranked factors for selected scenarios, evaluating whether the
attributions align with their understanding of portfolio sensitivities and market dynamics. Divergences
between algorithmic attributions and expert expectations trigger structured elicitation processes to identify
whether the discrepancy stems from model limitations, expert bias, or genuine insights revealing previously
unrecognized risk exposures 73!, This human-in-the-loop validation ensures that technical sophistication does
not override accumulated domain knowledge (3.

The validation protocol generates comprehensive documentation supporting regulatory review and internal
governance processes ). Attribution reports include scenario descriptions, factor confribution breakdowns,
consistency test results, and expert assessments. Validation findings feed back into scenario generation
refinements, creating an iterative improvement cycle !, Flagged scenarios undergo enhanced review or
exclusion from the library, while validated scenarios build confidence in the framework's reliability. This
systematic validation approach addresses regulatory requirements for explainable and demonstrably sound
risk measurement practices (,

4. Experimental Results and Analysis

4.1 Experimental Setup and Data Description

A. Dataset Characteristics

The experimental evaluation employs market data spanning January 2010 through December 2024,
encompassing multiple stress episodes including the European sovereign debt crisis, 2015-2016 commodity
price collapse, 2020 COVID-19 pandemic, and 2022-2023 inflation shock. The dataset aggregates risk factors
from Federal Reserve Economic Data, European Central Bank Statistical Data Warehouse, and Bloomberg
Terminal subscriptions 2. Primary risk factors include ten-year Treasury yields, investment-grade corporate
credit spreads, S&P 500 equity index levels, VIX implied volatility, EUR/USD exchange rates, WTI crude oil
prices, and three-month LIBOR rates.

Portfolio construction simulates a diversified institutional investor with 40% equity allocation across ten GICS
sectors, 45% fixed income spanning government and corporate bonds across maturity buckets, 10% alternative
investments including commodities and real estate, and 5% cash positions. The portfolio valuation employs
full revaluation using industry-standard pricing models rather than delta-gamma approximations, ensuring
accurate loss calculations under large stress shocks. Revaluation incorporates accrued interest, prepayment
assumptions for mortgage-backed securities, and default probability adjustments for credit exposures.

Table 1 presents summary statistics for the primary risk factors over the full sample period and crisis subperiods.
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Table 1: Risk Factor Summary Statistics (2010-2024)

Risk Factor Full Sample Full Sample Crisis Std Max Stress

Mean Std Dev Crisis Mean Dev Move
%ggidT(({/iﬁ‘sury 2.35 1.12 1.87 1.34 +2.89
Istrea q (gggﬁt 134 56 198 78 +287
o (%)500 0.82 18.6 321 243 34.1
VIX Level 178 8.92 28.4 12.5 82.7
EURUSD 1183 0.089 1.142 0.096 -0.183

The crisis subperiods exhibit elevated volatility and mean reversion patterns consistent with stress dynamics
observed in historical episodes [¢]. Cross-sectional correlations intensify during stress periods, with equity-
credit correlation increasing from 0.42 in normal times to 0.78 during crises. These empirical patterns provide
reference points for validating whether attribution analyses correctly capture stress episode characteristics.

B. Implementation Details

The SHAP computation implementation utilizes the Python shap library with custom extensions for financial
portfolio applications. Kernel SHAP approximation generates 2,048 coalition samples per scenario, balancing
computational cost against attribution accuracy. Convergence testing confirms that standard errors stabilize
below 5% of point estimates for all major risk factors. Background data selection employs ten reference
configurations spanning different market regimes identified through k-means clustering on risk factor
covariance matrices (%),

Portfolio valuation integrates QuantLib pricing functions for fixed income instruments and equity portfolio
analytics modules for derivatives and structured products. Parallel processing distributes valuation
computations across 64-core compute clusters, enabling rapid scenario evaluation. Each scenario evaluation
completes within 2.3 seconds on average, allowing the full attribution analysis for 500 scenarios to complete
within 20 minutes. This computational efficiency supports potential real-time monitoring applications where
attribution explanations inform rapid risk management decisions P!,

Baseline comparison methods include partial dependence plots measuring average marginal effects,
permutation importance quantifying performance degradation from factor shuffling, and LIME local linear
approximations. Each baseline method receives identical computational budgets to ensure fair comparisons.
Evaluation metrics encompass correlation with sensitivity analysis gradients, alignment with domain expert
rankings, stability across similar scenarios, and computational runtime characteristics [°°],

4.2 Attribution Analysis Results

The SHAP-based attribution framework successfully decomposes portfolio losses across the 500-scenario
stress testing library. Risk factor attributions exhibit strong alignment with portfolio construction
characteristics and known market relationships. Equity factors contribute on average 42% of total losses in
scenarios featuring significant equity market declines, closely matching the 40% equity portfolio weight.
Fixed income factors dominate in interest rate shock scenarios, with duration-sensitive bond positions
attributing 38% of losses to yield curve movements.

This visualization presents a stacked area chart showing the temporal evolution of asset class contributions
throughout a representative severe stress episode spanning 60 trading days. The x-axis represents time
progression from stress initiation through the recovery phase. The y-axis measures cumulative attributed
portfolio loss in millions of dollars. Five distinct colored layers represent contributions from equity exposures
(red), fixed income positions (blue), credit spread movements (orange), currency fluctuations (green), and
alternative investments (purple).

Figure 1 displays the attribution distribution across asset classes for severe stress scenarios in the 95th
percentile of portfolio losses.
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Figure 1: Asset Class Attribution Distribution in Severe Stress Scenarios
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The chart reveals that equity losses dominate the initial shock phase during days 0-15, contributing
approximately 60% of cumulative losses. Credit spread widening intensifies during days 15-35, overtaking
equity as the primary loss driver. The fixed income contribution remains relatively stable throughout,
reflecting offsetting effects of flight-to-quality bid for treasuries against corporate bond spread widening.
Currency and alternatives exhibit smaller but consistent negative contributions. The recovery phase beginning
around day 45 shows gradual reduction in equity and credit contributions while fixed income begins providing
positive attribution from coupon income. This temporal decomposition enables risk managers to track how
stress transmission mechanisms evolve and identigl critical inflection points where intervention strategies
might prove most effective.

Table 2 quantifies the top risk factors by aggregate attributed importance across all scenarios.

Table 2: Top Risk Factors by Aggregate SHAP Contribution

Mean  Abs Primary
Rank Risk Factor SHAP (5 Std Dev ol aotal Portfolio
millions) Exposure
S&P 500 Large Cap
1 Level 84.3 52.1 18.7% Equity
IG Credit Corporate
2 Spread 71.8 48.6 15.9% Bonds
10Y Treasury Government
3 Yield 63.2 41.3 14.0% Bonds
VIX Implied Options
4 Volatility 58.7 38.9 13.0% Positions
EUR/USD FX International
5 Rate 42.1 29.7 9.3% Equity
6 ot Crude: 35 4 312 8.5% Energy Sector
2Y-10Y Yield Curve
7 Curve 34.9 26.8 1.7% Positioning
HY Credit High  Yield
8 Spread 29.6 24.1 6.6% Bonds
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9 3M LIBOR 183 15.7 4.0% Floating Rate

Rate Debt
. Safe  Haven
10 Gold Price 11.2 9.8 2.5% Assets

The attribution hierarchy aligns with portfolio positioning and economic intuition. Equity market levels and
credit spreads emerge as dominant factors, reflecting substantial allocations to these asset classes and their
sensitivity to economic conditions. Interest rate factors rank prominently given the significant fixed income
portfolio component. Volatility contributions capture both direct exposures through options and indirect
impacts via correlation changes. The attribution diversity across ten factors demonstrates that the framework
avoids excessive concentration on single factors while identifying genuine drivers of portfolio risk.

Figure 2 illustrates the factor contribution patterns across different stress intensity categories.

Figure 2: Risk Factor Attribution Patterns by Stress Intensity Quintile
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This visualization employs a grouped horizontal bar chart comparing the relative importance of the top eight
risk factors across five stress intensity categories ranging from mild (Q1) to severe (Q5). The x-axis measures
the percentage of total attributed loss contributed by each factor within its intensity category. The y-axis lists
the risk factors including S&P 500, IG Credit, Treasury Yield, VIX, EUR/USD, Oil, Yield Curve, and HY
Credit. Each factor displays five bars color-coded by quintile intensity level using a sequential color scale
from light blue (Q1) to dark red (Q5). The chart reveals clear intensity-dependent patterns where equity and
credit spread contributions increase substantially in severe scenarios, rising from 12-15% in Q1 to 20-25% in
Q5. VIX contributions exhibit the strongest intensity dependence, jumping from 8% in mild stress to 18% in
severe episodes reflecting heightened volatility during extreme events. Treasury yield impacts show inverse
patterns, declining from 16% in QI to 11% in QS5 as flight-to-quality dynamics provide partial hedging in
severe stress. Currency and commodity contributions remain relatively stable across intensity levels,
suggesting their importance derives from idiosyncratic shocks rather than systematic stress intensification.
These differential patterns validate that the attribution framework correctly captures how risk transmission
mechanisms change character as stress severity increases, providing actionable insights for scenario-specific
risk management strategies.

Cross-factor interaction effects emerge as important contributors to extreme loss outcomes. The correlation
between equity declines and credit spread widening intensifies during stress periods, creating compounding
effects that exceed the sum of individual factor contributions. The attribution analysis captures these
interactions through coalition evaluations that measure joint factor impacts. Scenarios featuring simultaneous
equity sell-offs and credit deterioration exhibit superadditive loss attributions, where the combined effect
exceeds linear combination of individual impacts by an average of 23%. This ﬁndinﬁ validates the
framework's ability to identify non-linear risk interactions critical for tail risk management 1,
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4.3 Validation Against Economic Relationships

A. Correlation Consistency Testing

The correlation consistency validation examines whether attributed factor contributions exhibit directionally
appropriate relationships with known portfolio sensitivities. Equity positions with positive market exposure
should attribute losses to equity price declines rather than increases. Duration-positive fixed income portfolios
should attribute losses to interest rate rises. The analysis computes consistency scores measuring the
proportion of attributions that align with these fundamental relationships.

Results demonstrate 87.3% consistency across all scenarios and risk factors. Equity attributions achieve 94.1%
consistency, correctly identifying equity declines as loss drivers for long equity positions. Fixed income
achieves 89.7% consistency, appropriately attributing losses to yield increases in the vast majority of
scenarios. Credit spread attributions reach 83.2% consistency, with most deviations occurring in scenarios
featuring comﬁlex spread curve movements where duration and spread effects partially offset. Currency
attributions exhibit 81.8% consistency, with deviations primarily in scenarios involving significant currency
carry dynamics.

Table 3 details the consistency validation results across asset classes and scenario types.

Table 3: Correlation Consistency Validation Results

Normal Crisis . . Primary
Asset Class 8;:2?;: enc Scenario Scenario X:ﬁ:ﬁ?on Violation
y Consistency  Consistency Source
. Dividend
Equity 94.1% 96.8% 89.7% 23 yield effects
) Convexity
Fixed Income 89.7% 92.3% 85.1% 41 distortions
Curve
Credit 83.2% 87.4% 76.8% 67 inversion
effects
Currenc 81.8% 85.9% 74.3% 73 Carry  trade
y : : : dynamics
Commodities  78.6% 81.2% 73.9% 86 Contango/bac
D70 70 770 kwardation

The consistency validation reveals that attribution accuracy degrades moderately during crisis scenarios where
market relationships deviate from normal patterns. Crisis periods feature correlation breakdowns, non-linear
dynamics, and regime shifts that challenge standard attribution assumptions. Despite this degradation, crisis
scenario consistency remains above 74% across all asset classes, demonstrating reasonable robustness.
Violation analysis 1dentifies specific scenarios and factors requiring enhanced review, enabling targeted
validation efforts rather than wholesale framework rejection.

B. Stress Period Performance

Historical stress period backtesting evaluates whether the attribution framework correctly identifies risk
factors that historically drove portfolio losses during actual crisis episodes. The analysis reconstructs portfolio
erformance during the March 2020 COVID-19 market collapse, September 2008 Lehman Brothers
ankruptcy, and October 2022 UK gilt crisis. For each historical episode, the framework attributes realized
portfolio losses to risk factor movements, then compares attributed contributions against post-crisis expert
analyses and regulatory stress test explanations.

The COVID-19 episode attribution correctly identifies equity market collapse as the dominant loss driver,
attributing 63% of losses to equity positions declining an average of 34%. Credit spread widening contributes
24% of attributed losses, aligning with observed investment-grade spread movements from 120 basis points
to 407 basis points peak. The attribution captures the flight-to-quality Treasury rally that partially offset fixed
income losses, correctly assigning positive contributions from government bond holdings. VIX surge to 82.7
accounts for 11% of attributed losses through options gamma effects.

Table 4 presents the historical stress period attribution validation comparing framework outputs against expert
assessments.
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Table 4: Historical Stress Episode Attribution Validation

S e s KT, Allment Secndary
actor n % Factor n % Match
L e B e on
Clpe  Gollsme QU ssen 02 e
;Cj(gszii (%ig mnterest 71.3% Yield Surge  70-75%  0.96 Egsrrency)
Ez(?ojl})-cms FX Rates  48.2% Sgr:;gisgn 45-50%  0.89 fggg}t)
%&1165)-&%}1 Commoditl g5 1oy g‘;‘ffagpyse 80-85%  0.98 Ef)e(s) (EM

The alignment scores quantify agreement between framework attributions and expert consensus, achieving an
average of 0.94 across the five crisis episodes. This strong concordance validates that the attribution
methodology captures genuine economic drivers rather than algorithmic artifacts. Secondary factor matches
confirm that the framework identifies not only the primary crisis driver but also important secondary
transmission channels recognized by domain experts.

4.4 Comparative Analysis with Baseline Methods

The attribution framework demonstrates substantial improvements over baseline explainability techniques
across multiple evaluation dimensions. Partial dependence plots, while computationally efficient, fail to
account for feature interactions and provide unstagle attributions when marginal effects vary substantiall
across the feature distribution. Permutation importance exhibits high variance in complex portfolios wiﬂz
correlated risk factors, where shuffling one factor disrupts natural covariation patterns. LIME local
approximations prove sensitive to neighborhood definition choices and struggle to maintain consistency across
similar scenarios.

Table 5 summarizes the comparative performance across key evaluation metrics.

Table 5: Comparative Performance Against Baseline Explainability Methods

Attribution Domain

Method Stability Expert Consistency %fllr&putation Interaction
(Rank Alignment Score (%) (seconds) Capture
Correlation) (%)

SHAP

(Proposed) 0.847 78.3% 87.3% 2.31 Strong

Partial

Dependence 0.612 52.7% 61.8% 0.87 None

Permutation

Importance 0.534 49.1% 58.4% 1.24 Weak

LIME 0.608 56.9% 64.2% 3.17 Moderate

Sensitivity

Analysis 0.591 61.3% 69.7% 0.43 None

The SHAP-based framework achieves 34.2% higher attribution stability compared to the best baseline method,
measured through rank correlation of factor importance across similar scenarios. Domain expert alignment
reaches 78.3%, representing 28.6% improvement over sensitivity analysis. Consistency scores exceed all
baselines by margins ranging from 18-29 percentage points. These improvements come at moderate
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computational cost, with per-scenario runtime of 2.31 seconds remaining practical for operational
applications.

The interaction capture advantage proves particularly valuable for stress testing where compounding effects
drive tail risks. Sensitivity analysis and partial dependence methods fundamentally cannot represent
interaction effects, attributing all impacts to main effects even when joint factor movements create
superadditive losses. LIME captures local interactions but lacks stability guarantees and produces inconsistent
attributions across the scenario library. The SHAP framework's coalitional evaluation approach inherently
measures both main effects and all orders of interaction, providing comprehensive attribution that reflects
actual risk transmission mechanisms [100].

Computational scalability analysis examines runtime growth as portfolio complexity increases. The
framework maintains approximately linear scaling with the number of risk factors up to n=50, beyond which
coalition sampling overhead begins imposing super-linear growth. For typical institutional portfolios with 20-
30 major risk factors, computational requirements remain well within operational constraints. Parallelization
across scenarios enables batch processing of entire stress testing libraries within hours rather than days,
supporting quarterly regulatory reporting cycles and monthly risk management reviews %,

Figure 3 visualizes the computational scaling characteristics across varying portfolio complexities.
Figure 3: Computational Scaling Analysis Across Portfolio Dimensions
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This visualization employs a dual-axis line chart examining how computational requirements and attribution
quality scale with increasing portfolio complexity measured along multiple dimensions. The primary x-axis
represents the number of risk factors ranging from 10 to 100, while a secondary x-axis shows equivalent
increases in portfolio positions from 50 to 500 instruments. The left y-axis measures computation time per
scenario in seconds on a logarithmic scale from 0.1 to 100 seconds. The right y-axis displays attribution
accuracy measured by correlation with full revaluation ground truth, scaled from 0.80 to 1.00. Three line series
track different computational approaches: exact Shapley calculation (red line, only feasible up to 20 factors),
kernel SHAP with 2,048 samp?es (blue line, main proposed approach), and kernel SHAP with 512 samples
(green line, fast approximation). A fourth line series (purple, mapped to right axis) tracks attribution accuracy
for the main approach. The chart reveals that exact calculation becomes computationally infeasible beyond 18
risk factors, exceeding 30 seconds per scenario and growing exponentially. The proposed kernel SHAP
approach with 2,048 samples maintains near-linear scaling up to 50 factors, reaching approximately 8 seconds
per scenario at that compFexity level. Growth accelerates beyond 50 factors but remains manageable, reaching
25 seconds at 80 factors. The fast approximation with 512 samples achieves 60% faster computation but
sacrifices 8-12% attribution accuracy across the range. Attribution accuracy for the main approach maintains
above 0.92 correlation with ground truth through 60 factors, declining gradually to 0.87 at 100 factors. This
analysis demonstrates that the framework provides practical computational performance for realistic portfolio
applications while maintaining high attribution quaﬁty, with clear guidance on the tradeoffs available through
reduced sampling for time-critical applications.
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5. Conclusion
5.1 Summary of Findings

This research presents a comprehensive feature attribution framework addressing the critical explainability
gap in Al-enhanced market risk stress testing. The SHAP-based methodology decomposes portfolio losses
into interpretable risk factor contributions while maintaining theoretical guarantees of fairness and consistency
through Shapley value principles. Experimental validation using Federal Reserve stress test data and multiple
historical crisis episodes demonstrates that the framework achieves 87.3% consistency with established
economic relationships and 78.3% alignment with domain expert assessments.

The attribution analysis successfully identifies dominant risk drivers across diverse stress scenarios, with
equity market movements, credit spread changes, and interest rate shifts emerging as primary contributors
aligned with portfolio construction characteristics. Temporal decomposition reveals how risk transmission
mechanisms evolve throughout stress episodes, transitioning from equity-driven initial shocks to credit-
dominated secondary phases. The framework captures important non-linear interaction effects, quantifying
superadditive losses ngen multiple risk factors deteriorate simultaneously.

Comparative evaluation against baseline explainability techniques demonstrates substantial improvements
across multiple dimensions. Attribution stability measured through rank correlation increases 34.2% relative
to the best alternative method. Domain expert alignment improves 28.6% compared to traditional sensitivity
analysis. These enhancements come at modest computational cost, with per-scenario processing completing
in 2.31 seconds enabling practical operational deployment. The validation protocol successfully identifies
scenarios requiring enhanced review while building confidence in attributions that pass consistency checks.

The framework addresses regulatory requirements for transparent and explainable risk management practices.
Comprehensive documentation generated through the attribution analysis supports supervisory review and
internal governance processes. The methodology enables risk managers to validate whether Al-generated
scenarios reflect economically plausible shock transmissions, identify primary vulnerability sources requiring
risk mitigation attention, and communicate complex stress testing results to non-technical stakeholders
including senior management and board members. These capabilities directly advance the practical adoption
of artificial intelligence techniques in financial risk management while maintaining regulatory acceptability.

5.2 Future Research Directions

Several promising extensions could enhance the attribution framework's capabilities and applicability.
Dynamic attribution tracking would monitor how factor importance evolves over time as market conditions
change and portfolio compositions adjust. Current implementation treats each scenario as independent,
missing opportunities to identify emerging risk concentrations through longitudinal analysis. Temporal
attribution models could employ rolling window calculations detecting shifts in factor dominance patterns that
signal changing vulnerability profiles. Such capabilities would support proactive risk management by flagging
deteriorating risk concentrations before they crystallize into realized losses.

Integration with scenario generation algorithms represents another valuable direction. The current framework
operates downstream of scenario production, analyzing scenarios generated through se](()arate processes.
Bidirectional integration would enable scenario generators to receive attribution feedback, refining future
scenarios to emphasize factors identified as historically important risk drivers. Reinforcement learning
approaches could optimize scenario libraries to maximize coverage of diverse attribution patterns rather than
merely statistical properties. This integration would create a closed-loop system where explainability insights
directly improve scenario quality.

Extending the attribution framework to capture second-order effects and tail dependencies would enhance
extreme risk analysis. Current Shapley value calculations primarily capture first-order marginal contributions,
potentially understating importance of factors that enable crisis propagation through correlation channel
changes or liquidity evaporation. Attribution methods incorporating copula-based tail dependence structures
or regime-switching models could better quantify these higher-order effects. Developing efficient
Cﬁrrlllputational approximations for such extended attribution schemes presents interesting algorithmic
challenges.

Causal inference integration would strengthen the framework's ability to distinguish genuine risk drivers from
correlation artifacts. Current attribution identifies factors statistically associated with losses but cannot
definitively establish causal relationships. Incorporating causal discovery algorithms, instrumental variable
approaches, or structural equation models could provide stronger evidence that attributed factors genuinely
cause observed outcomes. This enhancement would particularly benefit validation workflows where
identifying spurious attributions remains challenging.

Cross-institutional comparison frameworks would enable aggregation of attribution insights across multiple
organizations to identify systemic risk patterns. Individual institutions analyze their specific portfolios, but
regulatory supervisors require perspectives on whether particular risk factors pose broad-based threats.
Privacy-preserving federated learning techniques could enable secure attribution aggregation without
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exposing proprietary portfolio positions. Such capabilities would support macroprudential surveillance while
respecting competitive confidentiality requirements.
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