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A b s t r a c t   

The increasing adoption of artificial intelligence in financial risk management has raised concerns about the 
transparency and interpretability of stress testing outcomes. This paper presents a feature attribution-based 
framework for explaining market risk stress scenarios through SHAP (SHapley Additive exPlanations) analysis. The 
proposed approach addresses the critical gap between advanced scenario generation techniques and regulatory 
requirements for explainable risk assessments. By decomposing portfolio loss predictions into individual risk factor 
contributions, the methodology enables risk managers to validate whether generated scenarios align with established 
economic relationships. Experimental results using Federal Reserve stress test data demonstrate that the attribution 
framework achieves 87.3% consistency with known financial correlations during crisis periods. The validation 
mechanism successfully identifies spurious risk factors and quantifies the relative importance of interest rates, equity 
volatility, and credit spreads across different stress intensities. Comparative analysis against traditional sensitivity 
analysis shows 34.2% improvement in attribution stability and 28.6% better alignment with domain expert 
assessments. The framework provides actionable insights for regulatory compliance while maintaining 
computational efficiency suitable for real-time risk monitoring applications. 

K e y w o r d s :  stress testing, feature attribution, explainability, market risk, SHAP analysis 

Introduction 

1.1 Background of Market Risk Stress Testing 

Financial institutions operate within complex risk environments where market volatilities, credit 
deteriorations, and liquidity constraints can rapidly compound into systemic threats. Stress testing has evolved 
from simple sensitivity analyses into sophisticated frameworks that evaluate institutional resilience under 
adverse scenarios [27]. Regulatory bodies worldwide mandate regular stress testing exercises to ensure 
adequate capital buffers and risk management practices. The Dodd-Frank Act established the Comprehensive 
Capital Analysis and Review process, requiring large banking organizations to demonstrate their ability to 
withstand severe economic downturns [46]. European banking regulations similarly enforce stringent stress 
testing requirements through the European Banking Authority's supervisory frameworks [91]. 

Traditional stress testing methodologies rely predominantly on historical scenarios or expert-designed 
hypothetical shocks. Historical simulation approaches replay past crisis events, assuming that future stress 
episodes will exhibit similar characteristics to observed disruptions [62]. Parametric methods construct 
scenarios based on statistical distributions fitted to market data, applying predetermined shock magnitudes to 
risk factors [85]. These conventional techniques face inherent limitations in capturing tail events, fail to account 
for regime shifts in market dynamics, and struggle to represent emerging risk interconnections [96]. 

The proliferation of machine learning techniques in financial analytics has introduced novel capabilities for 
scenario generation and risk assessment. Advanced algorithms can identify complex patterns in high-
dimensional market data, generate synthetic stress scenarios that preserve statistical properties of tail 
distributions, and adapt to evolving market conditions [42]. Despite these technical advances, the adoption of 
AI-driven stress testing faces significant barriers related to interpretability and regulatory acceptance [61]. 
Financial supervisors require transparent explanations of why specific scenarios produce particular loss 
estimates, demanding that institutions demonstrate the economic plausibility of their risk assessments [60]. 

1.2 Research Motivation and Challenges 

A. Regulatory Requirements for Explainability 

Financial regulators increasingly recognize that algorithmic opacity poses risks to financial stability and 
consumer protection. The Basel Committee on Banking Supervision emphasizes that institutions must 
understand and explain their risk measurement approaches, particularly when employing complex 
computational methods [88]. The European Central Bank's guide on internal models stipulates that banks should 
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provide clear documentation of modeling assumptions, validate results against economic intuition, and 
demonstrate staff understanding of algorithmic outputs. United States banking supervisors evaluate whether 
stress testing frameworks produce results that senior management and boards of directors can comprehend 
and challenge [83]. 

Recent regulatory guidance explicitly addresses artificial intelligence applications in risk management. The 
Federal Reserve's SR 11-7 guidance on model risk management requires institutions to validate that 
quantitative methods produce conceptually sound and appropriately calibrated outcomes [12]. The Office of 
the Comptroller of the Currency issued supplementary guidance highlighting that complex machine learning 
techniques must undergo enhanced validation procedures, including assessments of whether results align with 
economic theory and market conventions [53]. These regulatory expectations create substantial demand for 
explainability techniques that bridge the gap between algorithmic sophistication and human interpretability. 

B. Limitations of Current Approaches 

Existing stress testing frameworks exhibit several critical deficiencies that hinder their effectiveness and 
regulatory acceptance. Traditional sensitivity analyses evaluate risk factors in isolation, failing to capture 
interaction effects and non-linear dependencies that characterize actual market stress events [86]. Historical 
scenarios become increasingly stale as market structures evolve, reducing their relevance for assessing 
contemporary vulnerabilities [25]. Expert-designed hypothetical scenarios reflect individual judgment biases 
and may overlook emerging threat vectors [10]. 

Machine learning-enhanced scenario generation techniques have emerged as promising alternatives, offering 
capabilities to synthesize novel stress scenarios from historical patterns [17]. Generative adversarial networks 
can produce synthetic market trajectories that preserve tail risk characteristics while exploring unexplored 
regions of the scenario space [35]. Deep learning architectures demonstrate superior performance in capturing 
complex temporal dependencies and cross-asset correlations [33]. Despite these technical capabilities, 
practitioners and regulators struggle to interpret why specific AI-generated scenarios produce particular loss 
outcomes, understand which risk factors drive results, and validate whether scenarios reflect economically 
plausible shock transmissions [28]. 

The explainability challenge manifests across multiple dimensions. Black-box algorithms provide limited 
insight into their internal decision processes, complicating efforts to identify potential modeling errors or 
biased assumptions [69]. Risk managers cannot easily decompose aggregate portfolio losses into contributions 
from individual risk factors, hindering root cause analysis when scenarios produce unexpected results [15]. 
Validation teams lack systematic frameworks for assessing whether AI-generated scenarios maintain fidelity 
to established economic relationships and domain knowledge [54]. 

1.3 Research Contributions 

This research addresses the explainability gap in AI-enhanced stress testing through a systematic feature 
attribution framework built on Shapley value principles. The methodology decomposes scenario-driven 
portfolio losses into additive contributions from individual risk factors, enabling transparent evaluation of 
which market movements drive adverse outcomes. By computing Shapley values for each risk factor's 
marginal contribution, the approach provides game-theoretic guarantees of fairness and consistency in 
attribution [90]. 

The primary contributions of this work include: a formalized problem statement that precisely defines the 
stress scenario explainability challenge and establishes mathematical requirements for valid attribution 
methods; a computational framework for efficiently calculating SHAP values across high-dimensional risk 
factor spaces encountered in realistic portfolio stress testing applications; a validation protocol that 
systematically evaluates whether attributed factor contributions align with established economic relationships, 
empirical correlations, and domain expert knowledge; comprehensive experimental evaluation using Federal 
Reserve stress test data demonstrating practical applicability and performance characteristics across multiple 
crisis scenarios; comparative analysis quantifying improvements over baseline explainability techniques 
including partial dependence plots, permutation importance, and traditional sensitivity analysis. 

The proposed framework advances the state of practice by providing risk managers with actionable tools to 
interpret AI-generated stress scenarios, enabling validators to systematically assess economic plausibility of 
algorithmic outputs, and supporting regulatory compliance through transparent documentation of risk factor 
impacts. The methodology maintains computational tractability while preserving theoretical guarantees, 
making it suitable for integration into operational risk management workflows. 

2. Related Work 

2.1 Traditional Stress Testing Methodologies 

A. Historical Simulation Approaches 
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Historical simulation represents the most widely adopted stress testing methodology across financial 
institutions. The approach replays actual market movements from past crisis periods, applying observed risk 
factor changes to current portfolio positions [94]. Practitioners commonly select reference scenarios including 
the 2008 financial crisis, 1998 Long-Term Capital Management collapse, 1987 stock market crash, and 2020 
pandemic market disruption. The methodology's appeal stems from its simplicity, minimal distributional 
assumptions, and direct interpretability [41]. 

Implementation typically involves identifying relevant historical stress periods, extracting risk factor changes 
during these episodes, and applying proportional or absolute shocks to current market levels [43]. Institutions 
may implement multiple variations including direct historical replay preserving all observed correlations, 
scaled historical scenarios adjusting shock magnitudes for current volatility environments, and rolling window 
approaches periodically updating the reference crisis period [40]. 

B. Parametric Methods 

Parametric stress testing constructs scenarios through statistical models that characterize risk factor behaviors 
under adverse conditions. Practitioners fit probability distributions to historical data, calibrate correlation 
structures, and generate scenarios by sampling from the tail regions of these distributions [82]. Common 
parametric approaches include multivariate normal distributions with tail-adjusted volatility parameters, 
copula-based methods that separately model marginal distributions and dependence structures, and GARCH 
specifications that incorporate volatility clustering and leverage effects [71]. 

The parametric framework offers flexibility to explore scenarios beyond historical experience, control stress 
severity through quantile selection, and maintain internal consistency across related risk factors [95]. 
Limitations arise from distributional misspecification risks, difficulty capturing regime shifts, and sensitivity 
to calibration periods [19]. Tail distributions prove particularly challenging to estimate accurately, as limited 
extreme event observations provide unstable parameter estimates [64]. 

2.2 AI-Enhanced Scenario Generation 

Machine learning techniques have transformed scenario generation capabilities by enabling data-driven 
discovery of complex risk patterns and synthesis of novel stress scenarios. Generative adversarial networks 
learn to produce synthetic market trajectories that preserve statistical properties of training data while 
exploring unobserved scenario spaces [29]. The generator network creates candidate scenarios while the 
discriminator evaluates authenticity, driving an adversarial training process that yields realistic synthetic data 
[89]. 

Recent advances include conditional generation allowing scenario characteristics to be specified, temporal 
modeling capturing dynamics and autocorrelations, and tail-focused architectures emphasizing extreme value 
accuracy [30]. Deep learning approaches demonstrate particular strength in high-dimensional settings with 
complex cross-asset dependencies [48]. Recurrent neural networks and transformer architectures effectively 
model temporal evolution of risk factors, capturing momentum effects and mean reversion patterns [11]. 

Reinforcement learning provides an alternative paradigm where agents learn optimal scenario generation 
policies through trial and error [37]. The approach can incorporate domain constraints and regulatory 
requirements directly into the learning objective, potentially yielding scenarios that balance statistical realism 
with strategic stress testing goals [99]. Despite technical sophistication, these AI methods face adoption barriers 
related to interpretability, validation complexity, and regulatory skepticism regarding black-box algorithms 
[20]. 

2.3 Explainability in Financial Risk Management 

Explainable artificial intelligence has emerged as a critical research area addressing the interpretability 
challenges of complex machine learning systems. SHAP represents a unified framework grounding 
explanations in coalitional game theory through Shapley values [70]. The approach satisfies desirable properties 
including local accuracy ensuring explanations faithfully represent model behavior, missingness correctly 
attributing zero importance to absent features, and consistency guaranteeing that increasing a feature's 
marginal contribution never decreases its attributed importance [80]. 

Financial applications of explainability techniques span credit scoring, fraud detection, and algorithmic 
trading [9]. Institutions employ LIME for local interpretability through linear approximations, permutation 
importance assessing feature relevance via performance degradation, and partial dependence plots visualizing 
marginal effects [59]. Attention mechanisms in deep learning architectures provide inherent interpretability by 
revealing which inputs receive greatest weight [87]. 

Regulatory guidance increasingly references explainability requirements. The Federal Reserve's model risk 
management framework emphasizes ongoing monitoring and validation, conceptual soundness assessment, 
and outcomes analysis [13]. European banking supervision mandates that internal models demonstrate 
transparency and staff understanding [16]. These regulatory pressures drive demand for principled 
explainability methods applicable to production risk management systems [81]. 
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2.4 Research Gaps 

Despite extensive literature on both AI-enhanced scenario generation and explainability techniques, 
significant gaps persist at their intersection. Existing stress testing research predominantly focuses on 
improving scenario realism and tail risk accuracy, giving limited attention to interpretability and validation 
workflows [7]. Explainability studies concentrate on prediction tasks like credit default classification, with 
minimal exploration of scenario generation contexts [84]. 

Current attribution methods face challenges in high-dimensional financial applications where hundreds of risk 
factors interact through complex dependencies [18]. Computational complexity of exact Shapley value 
calculation becomes prohibitive for realistic portfolio stress testing, requiring approximation strategies that 
may sacrifice accuracy [66]. Validation protocols remain underdeveloped for assessing whether attributed risk 
factor contributions reflect genuine economic relationships versus artifacts of model architecture [22]. 

Practitioners lack standardized frameworks for conducting systematic explainability assessments of stress 
testing outputs. Ad hoc approaches dominate, with institutions developing proprietary validation procedures 
that vary substantially across organizations [58]. This fragmentation hinders knowledge accumulation, 
complicates regulatory oversight, and creates barriers to adopting advanced AI techniques [97]. The research 
presented in this paper directly addresses these gaps through a comprehensive attribution framework 
specifically designed for market risk stress testing applications. 

3. Methodology 

3.1 Problem Formulation 

The stress scenario explainability problem requires decomposing portfolio loss outcomes into interpretable 
contributions from individual risk factors. Consider a portfolio exposed to a set of market risk factors denoted 
by the vector x = (x₁, x₂, ..., xₙ), where each component represents a distinct risk factor such as interest rates, 
equity prices, credit spreads, or foreign exchange rates. A stress scenario defines specific movements in these 
risk factors, transforming the current state x⁰ to a stressed state x^s. The portfolio valuation function V(x) 
maps risk factor configurations to portfolio values, enabling loss calculation as L = V(x⁰) - V(x^s). 

The attribution challenge centers on identifying the contribution φᵢ of each risk factor i to the total loss L such 
that the sum of contributions equals the aggregate loss while individual attributions reflect the marginal impact 
of each factor. Traditional sensitivity analysis approaches compute partial derivatives ∂V/∂xᵢ, measuring 
infinitesimal changes around the current state. These gradient-based methods fail to properly handle discrete 
shock scenarios, ignore interaction effects between risk factors, and provide unstable attributions when 
valuation functions exhibit non-linearities. 

The Shapley value framework from cooperative game theory offers a principled solution [52]. Risk factors are 
treated as players in a coalitional game where the value function measures portfolio loss for any subset of 
shocked factors. The Shapley value φᵢ for factor i represents its average marginal contribution across all 
possible orderings of factor inclusion. Formally, φᵢ = Σ_S⊆N\{i} [|S|!(n-|S|-1)!/n!] × [V(S∪{i}) - V(S)], where 
S ranges over all subsets of factors excluding i, and the summation weights each marginal contribution by the 
probability of observing that particular coalition size. 

This formulation provides theoretical guarantees critical for financial applications. Efficiency ensures the sum 
of Shapley values equals the total loss being explained. Symmetry guarantees that factors making identical 
contributions receive identical attributions. Additivity permits decomposition of complex portfolios into 
simpler components. Null player property correctly assigns zero attribution to factors that generate no 
marginal impact. These properties establish Shapley values as the unique attribution method satisfying all 
desirable fairness axioms [57]. 

3.2 Stress Scenario Generation Framework 

A. Data Preprocessing and Feature Engineering 

The attribution framework requires carefully constructed risk factor representations that balance granularity 
with computational tractability. Market data undergoes standardization transformations to ensure comparable 
scales across heterogeneous risk factors. Interest rate term structures are decomposed through principal 
component analysis, extracting level, slope, and curvature factors that capture the dominant modes of yield 
curve variation [14]. Equity market exposures aggregate to sector indices rather than individual securities, 
reducing dimensionality while preserving systematic risk characteristics. Credit spreads are organized by 
rating class and maturity bucket, reflecting typical portfolio management practices. 

Temporal alignment procedures synchronize risk factors observed at different frequencies [26]. Daily equity 
returns, weekly credit spread changes, and monthly macroeconomic updates require interpolation and 
forward-filling techniques to create consistent time series. Missing data handling employs multiple imputation 
methods that preserve correlation structures and avoid introducing spurious patterns [67]. The preprocessing 
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pipeline generates a standardized risk factor matrix spanning ten years of historical observations, 
encompassing multiple economic cycles and stress episodes. 

Feature engineering constructs derived quantities that enhance scenario interpretability. Volatility measures 
computed through rolling standard deviations provide context for shock magnitude assessment [38]. Correlation 
breakdowns flag periods when historical relationships deviate from normal regimes, signaling potential model 
instability [44]. Technical indicators including momentum and mean reversion signals inform whether risk 
factor movements represent continuation of trends or reversals [21]. These engineered features augment raw 
risk factors in the attribution analysis, enabling richer explanations of scenario dynamics. 

B. Scenario Sampling Strategy 

Generating representative stress scenarios requires balancing exploration of the risk factor space against 
computational resource constraints. The framework employs stratified sampling to ensure coverage across 
different stress severity levels and risk factor combinations [98]. Regulatory scenarios from Federal Reserve 
and European Banking Authority stress tests provide anchor points representing supervisory expectations [45]. 
Historical episodes including the 2008 financial crisis, 2020 pandemic shock, and 2022 inflation surge 
contribute empirically observed stress patterns [79]. 

Synthetic scenario generation augments the historical and regulatory samples through conditional sampling 
procedures [68]. Given a specified stress severity target, measured by aggregate portfolio loss or VaR 
exceedance, the algorithm searches the risk factor space for configurations that produce the target outcome 
while maintaining realistic covariation patterns. Rejection sampling evaluates candidate scenarios against 
multivariate distributional fits, discarding implausible combinations that violate established correlation 
constraints [77]. The resulting scenario library contains approximately five hundred distinct stress 
configurations spanning mild, moderate, and severe categories. 

Scenario diversity metrics assess whether the library adequately represents the range of potential stress 
mechanisms. Coverage measures compute the proportion of risk factor space explored relative to historical 
observations [78]. Redundancy metrics identify near-duplicate scenarios that provide minimal incremental 
information [24]. Balance statistics verify that scenarios span different quadrants of the multidimensional risk 
factor space rather than clustering in specific regions [72]. These quality checks ensure that attribution analyses 
capture comprehensive insights rather than artifacts of limited scenario sampling. 

3.3 SHAP-Based Attribution Analysis 

A. Shapley Value Computation 

Exact Shapley value calculation requires evaluating the valuation function for all 2ⁿ possible coalitions of risk 
factors, creating exponential computational complexity infeasible for realistic portfolio applications with n > 
20 factors. The framework implements kernel SHAP, a sampling-based approximation that efficiently 
estimates Shapley values through weighted linear regression [50]. The approach generates random coalitions 
by sampling binary masks indicating which factors are present versus absent, evaluates portfolio loss for each 
coalition, and fits a linear model where coefficients correspond to Shapley value estimates. 

The coalition sampling procedure employs stratified sampling to ensure adequate representation of different 
coalition sizes [56]. Small coalitions with few active factors provide information about individual risk factor 
impacts. Large coalitions approaching the full factor set reveal interaction effects and conditioning 
dependencies. The weighting scheme assigns higher importance to mid-sized coalitions where marginal 
contribution measurements carry greatest statistical information. Convergence diagnostics monitor attribution 
estimate stability as additional coalitions are sampled, terminating when standard errors fall below acceptable 
thresholds [36]. 

Background data selection significantly influences Shapley value estimates, as absent factors must be assigned 
reference values representing their "missing" state [65]. The framework employs multiple background 
configurations spanning different market regimes to ensure robust attributions. Normal market conditions 
provide one baseline, while previous stress episodes offer alternative reference points reflecting factor 
behaviors during adverse environments. Averaging across multiple backgrounds yields attributions that 
capture robust factor importance rather than artifacts of specific reference choices [76]. 

B. Feature Contribution Quantification 

The computed Shapley values decompose the portfolio loss into a baseline expectation plus additive 
contributions from each risk factor. Formally, L = E[L] + Σᵢφᵢ, where E[L] represents expected loss under the 
background distribution and φᵢ quantifies factor i's attributed contribution. Positive Shapley values indicate 
risk factors whose movements increase losses, while negative values correspond to factors providing offsetting 
benefits. The magnitude of each attribution reflects its relative importance in driving the overall stress 
outcome. 
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Attribution aggregation enables hierarchical explanations at multiple granularity levels [34]. Individual risk 
factors roll up to asset class contributions, revealing whether equity, fixed income, or credit exposures 
dominate the loss profile. Geographic segmentations attribute losses to regional factors, informing 
international diversification strategies [74]. Temporal decompositions track how factor importance evolves 
throughout the stress episode, distinguishing initial shock impacts from secondary propagation effects [31]. 
These multi-level explanations support diverse stakeholder needs from detailed analyst reviews to executive 
summary presentations. 

Statistical uncertainty quantification accompanies each attribution estimate [47]. Bootstrap resampling 
generates confidence intervals around Shapley values, reflecting sampling variability in the approximation 
procedure. Sensitivity analyses examine how attributions change under alternative background selections and 
coalition sampling schemes. Stability metrics compare attributions computed from different random seeds, 
flagging factors whose importance estimates exhibit excessive variability [32]. These uncertainty measures 
prevent over-interpretation of marginal differences and support rigorous validation assessments. 

3.4 Validation Mechanism 

The validation framework assesses whether attributed factor contributions align with established economic 
relationships and domain expertise. Correlation consistency testing verifies that factors attributed with large 
loss contributions exhibit appropriate directional relationships with portfolio exposures [4]. Portfolios with 
long equity positions should attribute losses to equity price declines rather than increases. Fixed income 
portfolios sensitive to duration should attribute losses to interest rate rises. Violations of these basic 
consistency checks flag potential attribution errors requiring investigation. 

Cross-scenario coherence evaluates attribution stability across related stress configurations [23]. Factors 
important in severe stress scenarios should generally maintain relevance in moderate stress versions, with 
magnitudes scaling proportionally to shock intensity. Abrupt changes in factor rankings between similar 
scenarios suggest attribution instability or regime-dependent dynamics worthy of deeper analysis. Coherence 
metrics quantify the rank correlation of factor importance across scenario families, targeting high values 
indicating consistent factor roles [39]. 

Domain expert validation solicits qualitative assessments from experienced risk managers regarding 
attribution plausibility [5]. Experts review the top-ranked factors for selected scenarios, evaluating whether the 
attributions align with their understanding of portfolio sensitivities and market dynamics. Divergences 
between algorithmic attributions and expert expectations trigger structured elicitation processes to identify 
whether the discrepancy stems from model limitations, expert bias, or genuine insights revealing previously 
unrecognized risk exposures [73]. This human-in-the-loop validation ensures that technical sophistication does 
not override accumulated domain knowledge [63]. 

The validation protocol generates comprehensive documentation supporting regulatory review and internal 
governance processes [8]. Attribution reports include scenario descriptions, factor contribution breakdowns, 
consistency test results, and expert assessments. Validation findings feed back into scenario generation 
refinements, creating an iterative improvement cycle [3]. Flagged scenarios undergo enhanced review or 
exclusion from the library, while validated scenarios build confidence in the framework's reliability. This 
systematic validation approach addresses regulatory requirements for explainable and demonstrably sound 
risk measurement practices [1]. 

4. Experimental Results and Analysis 

4.1 Experimental Setup and Data Description 

A. Dataset Characteristics 

The experimental evaluation employs market data spanning January 2010 through December 2024, 
encompassing multiple stress episodes including the European sovereign debt crisis, 2015-2016 commodity 
price collapse, 2020 COVID-19 pandemic, and 2022-2023 inflation shock. The dataset aggregates risk factors 
from Federal Reserve Economic Data, European Central Bank Statistical Data Warehouse, and Bloomberg 
Terminal subscriptions [2]. Primary risk factors include ten-year Treasury yields, investment-grade corporate 
credit spreads, S&P 500 equity index levels, VIX implied volatility, EUR/USD exchange rates, WTI crude oil 
prices, and three-month LIBOR rates. 

Portfolio construction simulates a diversified institutional investor with 40% equity allocation across ten GICS 
sectors, 45% fixed income spanning government and corporate bonds across maturity buckets, 10% alternative 
investments including commodities and real estate, and 5% cash positions. The portfolio valuation employs 
full revaluation using industry-standard pricing models rather than delta-gamma approximations, ensuring 
accurate loss calculations under large stress shocks. Revaluation incorporates accrued interest, prepayment 
assumptions for mortgage-backed securities, and default probability adjustments for credit exposures. 

Table 1 presents summary statistics for the primary risk factors over the full sample period and crisis subperiods. 
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Table 1: Risk Factor Summary Statistics (2010-2024) 

Risk Factor 
Full Sample 
Mean 

Full Sample 
Std Dev 

Crisis Mean 
Crisis Std 
Dev 

Max Stress 
Move 

10Y Treasury 
Yield (%) 

2.35 1.12 1.87 1.34 +2.89 

IG Credit 
Spread (bps) 

134 56 198 78 +287 

S&P 500 
Return (%) 0.82 18.6 -3.21 24.3 -34.1 

VIX Level 17.8 8.92 28.4 12.5 82.7 

EUR/USD 
Rate 

1.183 0.089 1.142 0.096 -0.183 

The crisis subperiods exhibit elevated volatility and mean reversion patterns consistent with stress dynamics 
observed in historical episodes [6]. Cross-sectional correlations intensify during stress periods, with equity-
credit correlation increasing from 0.42 in normal times to 0.78 during crises. These empirical patterns provide 
reference points for validating whether attribution analyses correctly capture stress episode characteristics. 

B. Implementation Details 

The SHAP computation implementation utilizes the Python shap library with custom extensions for financial 
portfolio applications. Kernel SHAP approximation generates 2,048 coalition samples per scenario, balancing 
computational cost against attribution accuracy. Convergence testing confirms that standard errors stabilize 
below 5% of point estimates for all major risk factors. Background data selection employs ten reference 
configurations spanning different market regimes identified through k-means clustering on risk factor 
covariance matrices [49]. 

Portfolio valuation integrates QuantLib pricing functions for fixed income instruments and equity portfolio 
analytics modules for derivatives and structured products. Parallel processing distributes valuation 
computations across 64-core compute clusters, enabling rapid scenario evaluation. Each scenario evaluation 
completes within 2.3 seconds on average, allowing the full attribution analysis for 500 scenarios to complete 
within 20 minutes. This computational efficiency supports potential real-time monitoring applications where 
attribution explanations inform rapid risk management decisions [51]. 

Baseline comparison methods include partial dependence plots measuring average marginal effects, 
permutation importance quantifying performance degradation from factor shuffling, and LIME local linear 
approximations. Each baseline method receives identical computational budgets to ensure fair comparisons. 
Evaluation metrics encompass correlation with sensitivity analysis gradients, alignment with domain expert 
rankings, stability across similar scenarios, and computational runtime characteristics [55]. 

4.2 Attribution Analysis Results 

The SHAP-based attribution framework successfully decomposes portfolio losses across the 500-scenario 
stress testing library. Risk factor attributions exhibit strong alignment with portfolio construction 
characteristics and known market relationships. Equity factors contribute on average 42% of total losses in 
scenarios featuring significant equity market declines, closely matching the 40% equity portfolio weight. 
Fixed income factors dominate in interest rate shock scenarios, with duration-sensitive bond positions 
attributing 38% of losses to yield curve movements. 

This visualization presents a stacked area chart showing the temporal evolution of asset class contributions 
throughout a representative severe stress episode spanning 60 trading days. The x-axis represents time 
progression from stress initiation through the recovery phase. The y-axis measures cumulative attributed 
portfolio loss in millions of dollars. Five distinct colored layers represent contributions from equity exposures 
(red), fixed income positions (blue), credit spread movements (orange), currency fluctuations (green), and 
alternative investments (purple). 

Figure 1 displays the attribution distribution across asset classes for severe stress scenarios in the 95th 
percentile of portfolio losses. 
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Figure 1: Asset Class Attribution Distribution in Severe Stress Scenarios 

 

The chart reveals that equity losses dominate the initial shock phase during days 0-15, contributing 
approximately 60% of cumulative losses. Credit spread widening intensifies during days 15-35, overtaking 
equity as the primary loss driver. The fixed income contribution remains relatively stable throughout, 
reflecting offsetting effects of flight-to-quality bid for treasuries against corporate bond spread widening. 
Currency and alternatives exhibit smaller but consistent negative contributions. The recovery phase beginning 
around day 45 shows gradual reduction in equity and credit contributions while fixed income begins providing 
positive attribution from coupon income. This temporal decomposition enables risk managers to track how 
stress transmission mechanisms evolve and identify critical inflection points where intervention strategies 
might prove most effective. 

Table 2 quantifies the top risk factors by aggregate attributed importance across all scenarios. 

Table 2: Top Risk Factors by Aggregate SHAP Contribution 

Rank Risk Factor 
Mean Abs 
SHAP ($ 
millions) 

Std Dev 
% of Total 
Attribution 

Primary 
Portfolio 
Exposure 

1 
S&P 500 
Level 84.3 52.1 18.7% 

Large Cap 
Equity 

2 
IG Credit 
Spread 

71.8 48.6 15.9% 
Corporate 
Bonds 

3 
10Y Treasury 
Yield 

63.2 41.3 14.0% 
Government 
Bonds 

4 
VIX Implied 
Volatility 58.7 38.9 13.0% 

Options 
Positions 

5 
EUR/USD FX 
Rate 

42.1 29.7 9.3% 
International 
Equity 

6 
WTI Crude 
Oil 

38.4 31.2 8.5% Energy Sector 

7 
2Y-10Y Yield 
Curve 34.9 26.8 7.7% 

Curve 
Positioning 

8 
HY Credit 
Spread 

29.6 24.1 6.6% 
High Yield 
Bonds 
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9 
3M LIBOR 
Rate 

18.3 15.7 4.0% 
Floating Rate 
Debt 

10 Gold Price 11.2 9.8 2.5% 
Safe Haven 
Assets 

The attribution hierarchy aligns with portfolio positioning and economic intuition. Equity market levels and 
credit spreads emerge as dominant factors, reflecting substantial allocations to these asset classes and their 
sensitivity to economic conditions. Interest rate factors rank prominently given the significant fixed income 
portfolio component. Volatility contributions capture both direct exposures through options and indirect 
impacts via correlation changes. The attribution diversity across ten factors demonstrates that the framework 
avoids excessive concentration on single factors while identifying genuine drivers of portfolio risk. 

Figure 2 illustrates the factor contribution patterns across different stress intensity categories. 

Figure 2: Risk Factor Attribution Patterns by Stress Intensity Quintile 

 

This visualization employs a grouped horizontal bar chart comparing the relative importance of the top eight 
risk factors across five stress intensity categories ranging from mild (Q1) to severe (Q5). The x-axis measures 
the percentage of total attributed loss contributed by each factor within its intensity category. The y-axis lists 
the risk factors including S&P 500, IG Credit, Treasury Yield, VIX, EUR/USD, Oil, Yield Curve, and HY 
Credit. Each factor displays five bars color-coded by quintile intensity level using a sequential color scale 
from light blue (Q1) to dark red (Q5). The chart reveals clear intensity-dependent patterns where equity and 
credit spread contributions increase substantially in severe scenarios, rising from 12-15% in Q1 to 20-25% in 
Q5. VIX contributions exhibit the strongest intensity dependence, jumping from 8% in mild stress to 18% in 
severe episodes reflecting heightened volatility during extreme events. Treasury yield impacts show inverse 
patterns, declining from 16% in Q1 to 11% in Q5 as flight-to-quality dynamics provide partial hedging in 
severe stress. Currency and commodity contributions remain relatively stable across intensity levels, 
suggesting their importance derives from idiosyncratic shocks rather than systematic stress intensification. 
These differential patterns validate that the attribution framework correctly captures how risk transmission 
mechanisms change character as stress severity increases, providing actionable insights for scenario-specific 
risk management strategies. 

Cross-factor interaction effects emerge as important contributors to extreme loss outcomes. The correlation 
between equity declines and credit spread widening intensifies during stress periods, creating compounding 
effects that exceed the sum of individual factor contributions. The attribution analysis captures these 
interactions through coalition evaluations that measure joint factor impacts. Scenarios featuring simultaneous 
equity sell-offs and credit deterioration exhibit superadditive loss attributions, where the combined effect 
exceeds linear combination of individual impacts by an average of 23%. This finding validates the 
framework's ability to identify non-linear risk interactions critical for tail risk management [75]. 
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4.3 Validation Against Economic Relationships 

A. Correlation Consistency Testing 

The correlation consistency validation examines whether attributed factor contributions exhibit directionally 
appropriate relationships with known portfolio sensitivities. Equity positions with positive market exposure 
should attribute losses to equity price declines rather than increases. Duration-positive fixed income portfolios 
should attribute losses to interest rate rises. The analysis computes consistency scores measuring the 
proportion of attributions that align with these fundamental relationships. 

Results demonstrate 87.3% consistency across all scenarios and risk factors. Equity attributions achieve 94.1% 
consistency, correctly identifying equity declines as loss drivers for long equity positions. Fixed income 
achieves 89.7% consistency, appropriately attributing losses to yield increases in the vast majority of 
scenarios. Credit spread attributions reach 83.2% consistency, with most deviations occurring in scenarios 
featuring complex spread curve movements where duration and spread effects partially offset. Currency 
attributions exhibit 81.8% consistency, with deviations primarily in scenarios involving significant currency 
carry dynamics. 

Table 3 details the consistency validation results across asset classes and scenario types. 

Table 3: Correlation Consistency Validation Results 

Asset Class 
Overall 
Consistency 

Normal 
Scenario 
Consistency 

Crisis 
Scenario 
Consistency 

Violation 
Count 

Primary 
Violation 
Source 

Equity 94.1% 96.8% 89.7% 23 
Dividend 
yield effects 

Fixed Income 89.7% 92.3% 85.1% 41 
Convexity 
distortions 

Credit 83.2% 87.4% 76.8% 67 
Curve 
inversion 
effects 

Currency 81.8% 85.9% 74.3% 73 
Carry trade 
dynamics 

Commodities 78.6% 81.2% 73.9% 86 
Contango/bac
kwardation 

The consistency validation reveals that attribution accuracy degrades moderately during crisis scenarios where 
market relationships deviate from normal patterns. Crisis periods feature correlation breakdowns, non-linear 
dynamics, and regime shifts that challenge standard attribution assumptions. Despite this degradation, crisis 
scenario consistency remains above 74% across all asset classes, demonstrating reasonable robustness. 
Violation analysis identifies specific scenarios and factors requiring enhanced review, enabling targeted 
validation efforts rather than wholesale framework rejection. 

B. Stress Period Performance 

Historical stress period backtesting evaluates whether the attribution framework correctly identifies risk 
factors that historically drove portfolio losses during actual crisis episodes. The analysis reconstructs portfolio 
performance during the March 2020 COVID-19 market collapse, September 2008 Lehman Brothers 
bankruptcy, and October 2022 UK gilt crisis. For each historical episode, the framework attributes realized 
portfolio losses to risk factor movements, then compares attributed contributions against post-crisis expert 
analyses and regulatory stress test explanations. 

The COVID-19 episode attribution correctly identifies equity market collapse as the dominant loss driver, 
attributing 63% of losses to equity positions declining an average of 34%. Credit spread widening contributes 
24% of attributed losses, aligning with observed investment-grade spread movements from 120 basis points 
to 407 basis points peak. The attribution captures the flight-to-quality Treasury rally that partially offset fixed 
income losses, correctly assigning positive contributions from government bond holdings. VIX surge to 82.7 
accounts for 11% of attributed losses through options gamma effects. 

Table 4 presents the historical stress period attribution validation comparing framework outputs against expert 
assessments. 
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Table 4: Historical Stress Episode Attribution Validation 

Crisis 
Episode 

Framewor
k Top 
Factor 

Framewor
k 
Attributio
n % 

Expert 
Consensus 
Factor 

Expert 
Attributio
n % 

Alignment 
Score 

Secondary 
Factor 
Match 

COVID-19 
(Mar 2020) 

Equity 
Decline 63.2% 

Equity 
Collapse 60-65% 0.94 

Yes (Credit 
Spreads) 

Lehman 
Collapse 
(Sep 2008) 

Credit 
Spreads 

58.7% 
Credit 
Crisis 

55-60% 0.92 
Yes 
(Equity) 

UK Gilt 
Crisis (Oct 
2022) 

Interest 
Rates 

71.3% Yield Surge 70-75% 0.96 
Yes 
(Currency) 

Euro Crisis 
(2011-
2012) 

FX Rates 48.2% 
Sovereign 
Spreads 

45-50% 0.89 
Partial 
(Credit) 

Oil Crash 
(2015-
2016) 

Commoditi
es 

82.1% 
Energy 
Collapse 

80-85% 0.98 
Yes (EM 
FX) 

The alignment scores quantify agreement between framework attributions and expert consensus, achieving an 
average of 0.94 across the five crisis episodes. This strong concordance validates that the attribution 
methodology captures genuine economic drivers rather than algorithmic artifacts. Secondary factor matches 
confirm that the framework identifies not only the primary crisis driver but also important secondary 
transmission channels recognized by domain experts. 

4.4 Comparative Analysis with Baseline Methods 

The attribution framework demonstrates substantial improvements over baseline explainability techniques 
across multiple evaluation dimensions. Partial dependence plots, while computationally efficient, fail to 
account for feature interactions and provide unstable attributions when marginal effects vary substantially 
across the feature distribution. Permutation importance exhibits high variance in complex portfolios with 
correlated risk factors, where shuffling one factor disrupts natural covariation patterns. LIME local 
approximations prove sensitive to neighborhood definition choices and struggle to maintain consistency across 
similar scenarios. 

Table 5 summarizes the comparative performance across key evaluation metrics. 

Table 5: Comparative Performance Against Baseline Explainability Methods 

Method 

Attribution 
Stability 
(Rank 
Correlation) 

Domain 
Expert 
Alignment 
(%) 

Consistency 
Score (%) 

Computation 
Time 
(seconds) 

Interaction 
Capture 

SHAP 
(Proposed) 

0.847 78.3% 87.3% 2.31 Strong 

Partial 
Dependence 

0.612 52.7% 61.8% 0.87 None 

Permutation 
Importance 

0.534 49.1% 58.4% 1.24 Weak 

LIME 0.608 56.9% 64.2% 3.17 Moderate 

Sensitivity 
Analysis 

0.591 61.3% 69.7% 0.43 None 

The SHAP-based framework achieves 34.2% higher attribution stability compared to the best baseline method, 
measured through rank correlation of factor importance across similar scenarios. Domain expert alignment 
reaches 78.3%, representing 28.6% improvement over sensitivity analysis. Consistency scores exceed all 
baselines by margins ranging from 18-29 percentage points. These improvements come at moderate 
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computational cost, with per-scenario runtime of 2.31 seconds remaining practical for operational 
applications. 

The interaction capture advantage proves particularly valuable for stress testing where compounding effects 
drive tail risks. Sensitivity analysis and partial dependence methods fundamentally cannot represent 
interaction effects, attributing all impacts to main effects even when joint factor movements create 
superadditive losses. LIME captures local interactions but lacks stability guarantees and produces inconsistent 
attributions across the scenario library. The SHAP framework's coalitional evaluation approach inherently 
measures both main effects and all orders of interaction, providing comprehensive attribution that reflects 
actual risk transmission mechanisms [100]. 

Computational scalability analysis examines runtime growth as portfolio complexity increases. The 
framework maintains approximately linear scaling with the number of risk factors up to n=50, beyond which 
coalition sampling overhead begins imposing super-linear growth. For typical institutional portfolios with 20-
30 major risk factors, computational requirements remain well within operational constraints. Parallelization 
across scenarios enables batch processing of entire stress testing libraries within hours rather than days, 
supporting quarterly regulatory reporting cycles and monthly risk management reviews [92]. 

Figure 3 visualizes the computational scaling characteristics across varying portfolio complexities. 

Figure 3: Computational Scaling Analysis Across Portfolio Dimensions 

 

This visualization employs a dual-axis line chart examining how computational requirements and attribution 
quality scale with increasing portfolio complexity measured along multiple dimensions. The primary x-axis 
represents the number of risk factors ranging from 10 to 100, while a secondary x-axis shows equivalent 
increases in portfolio positions from 50 to 500 instruments. The left y-axis measures computation time per 
scenario in seconds on a logarithmic scale from 0.1 to 100 seconds. The right y-axis displays attribution 
accuracy measured by correlation with full revaluation ground truth, scaled from 0.80 to 1.00. Three line series 
track different computational approaches: exact Shapley calculation (red line, only feasible up to 20 factors), 
kernel SHAP with 2,048 samples (blue line, main proposed approach), and kernel SHAP with 512 samples 
(green line, fast approximation). A fourth line series (purple, mapped to right axis) tracks attribution accuracy 
for the main approach. The chart reveals that exact calculation becomes computationally infeasible beyond 18 
risk factors, exceeding 30 seconds per scenario and growing exponentially. The proposed kernel SHAP 
approach with 2,048 samples maintains near-linear scaling up to 50 factors, reaching approximately 8 seconds 
per scenario at that complexity level. Growth accelerates beyond 50 factors but remains manageable, reaching 
25 seconds at 80 factors. The fast approximation with 512 samples achieves 60% faster computation but 
sacrifices 8-12% attribution accuracy across the range. Attribution accuracy for the main approach maintains 
above 0.92 correlation with ground truth through 60 factors, declining gradually to 0.87 at 100 factors. This 
analysis demonstrates that the framework provides practical computational performance for realistic portfolio 
applications while maintaining high attribution quality, with clear guidance on the tradeoffs available through 
reduced sampling for time-critical applications. 
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5. Conclusion 

5.1 Summary of Findings 

This research presents a comprehensive feature attribution framework addressing the critical explainability 
gap in AI-enhanced market risk stress testing. The SHAP-based methodology decomposes portfolio losses 
into interpretable risk factor contributions while maintaining theoretical guarantees of fairness and consistency 
through Shapley value principles. Experimental validation using Federal Reserve stress test data and multiple 
historical crisis episodes demonstrates that the framework achieves 87.3% consistency with established 
economic relationships and 78.3% alignment with domain expert assessments. 

The attribution analysis successfully identifies dominant risk drivers across diverse stress scenarios, with 
equity market movements, credit spread changes, and interest rate shifts emerging as primary contributors 
aligned with portfolio construction characteristics. Temporal decomposition reveals how risk transmission 
mechanisms evolve throughout stress episodes, transitioning from equity-driven initial shocks to credit-
dominated secondary phases. The framework captures important non-linear interaction effects, quantifying 
superadditive losses when multiple risk factors deteriorate simultaneously. 

Comparative evaluation against baseline explainability techniques demonstrates substantial improvements 
across multiple dimensions. Attribution stability measured through rank correlation increases 34.2% relative 
to the best alternative method. Domain expert alignment improves 28.6% compared to traditional sensitivity 
analysis. These enhancements come at modest computational cost, with per-scenario processing completing 
in 2.31 seconds enabling practical operational deployment. The validation protocol successfully identifies 
scenarios requiring enhanced review while building confidence in attributions that pass consistency checks. 

The framework addresses regulatory requirements for transparent and explainable risk management practices. 
Comprehensive documentation generated through the attribution analysis supports supervisory review and 
internal governance processes. The methodology enables risk managers to validate whether AI-generated 
scenarios reflect economically plausible shock transmissions, identify primary vulnerability sources requiring 
risk mitigation attention, and communicate complex stress testing results to non-technical stakeholders 
including senior management and board members. These capabilities directly advance the practical adoption 
of artificial intelligence techniques in financial risk management while maintaining regulatory acceptability. 

5.2 Future Research Directions 

Several promising extensions could enhance the attribution framework's capabilities and applicability. 
Dynamic attribution tracking would monitor how factor importance evolves over time as market conditions 
change and portfolio compositions adjust. Current implementation treats each scenario as independent, 
missing opportunities to identify emerging risk concentrations through longitudinal analysis. Temporal 
attribution models could employ rolling window calculations detecting shifts in factor dominance patterns that 
signal changing vulnerability profiles. Such capabilities would support proactive risk management by flagging 
deteriorating risk concentrations before they crystallize into realized losses. 

Integration with scenario generation algorithms represents another valuable direction. The current framework 
operates downstream of scenario production, analyzing scenarios generated through separate processes. 
Bidirectional integration would enable scenario generators to receive attribution feedback, refining future 
scenarios to emphasize factors identified as historically important risk drivers. Reinforcement learning 
approaches could optimize scenario libraries to maximize coverage of diverse attribution patterns rather than 
merely statistical properties. This integration would create a closed-loop system where explainability insights 
directly improve scenario quality. 

Extending the attribution framework to capture second-order effects and tail dependencies would enhance 
extreme risk analysis. Current Shapley value calculations primarily capture first-order marginal contributions, 
potentially understating importance of factors that enable crisis propagation through correlation channel 
changes or liquidity evaporation. Attribution methods incorporating copula-based tail dependence structures 
or regime-switching models could better quantify these higher-order effects. Developing efficient 
computational approximations for such extended attribution schemes presents interesting algorithmic 
challenges. 

Causal inference integration would strengthen the framework's ability to distinguish genuine risk drivers from 
correlation artifacts. Current attribution identifies factors statistically associated with losses but cannot 
definitively establish causal relationships. Incorporating causal discovery algorithms, instrumental variable 
approaches, or structural equation models could provide stronger evidence that attributed factors genuinely 
cause observed outcomes. This enhancement would particularly benefit validation workflows where 
identifying spurious attributions remains challenging. 

Cross-institutional comparison frameworks would enable aggregation of attribution insights across multiple 
organizations to identify systemic risk patterns. Individual institutions analyze their specific portfolios, but 
regulatory supervisors require perspectives on whether particular risk factors pose broad-based threats. 
Privacy-preserving federated learning techniques could enable secure attribution aggregation without 
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exposing proprietary portfolio positions. Such capabilities would support macroprudential surveillance while 
respecting competitive confidentiality requirements. 
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