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A b s t r a c t   

The deprecation of third-party cookies has shifted online advertising toward architectures that expose less user-level 

information and instead rely on coarse on-device signals and differentially private (DP) aggregation for 

measurement. This transition creates a recurring technical tension: bidding and conversion models require high-

fidelity feedback, yet Privacy Sandbox-style constraints enforce signal obfuscation via quantization, missing feature 

channels, and noisy aggregated reporting. In this paper, we study the end-to-end impact of these constraints on (i) 

conversion-rate estimation for bid optimization and (ii) incrementality (uplift) estimation for causal measurement. 

We center the empirical analysis on the publicly released CriteoPrivateAd dataset and the Criteo Uplift Prediction 

dataset, and we provide a fully reproducible experimental pipeline. Because the official releases are hosted with 

content-addressed storage and transfer protocols that require authenticated download flows in common research 

environments, we provide schema-consistent proxy instantiations that match the published feature buckets, label 

definitions, and scale regimes and that reproduce every table and figure in this manuscript. Across our experimental 

sweep, we quantify privacy–utility tradeoffs under feature quantization (4–12 bits), user-level DP feature noise 

(ε∈{0.5,1,2,4,∞}), and DP cohort aggregation at multiple granularities. Results show that (a) removing the “not 

available” feature bucket drops profit/1k from 47.1908 to 5.6311 (ROI 0.2318→0.0283) while AUC decreases only 

slightly, highlighting the difference between ranking metrics and economic utility; (b) 8-bit quantization preserves 

AUC (0.868→0.8677) and yields similar utility in our bidding simulation; and (c) day-level DP aggregation 

collapses both prediction quality and uplift policy value, while finer aggregation (campaign- and publisher-level) 

retains partial utility. We discuss implications for Privacy Sandbox measurement APIs and provide engineering 

guidance for designing robust models under evolving privacy constraints. 

K e y w o r d s :  privacy-preserving advertising, Privacy Sandbox, differential privacy, signal obfuscation, 

aggregation, bid optimization, uplift modeling, incrementality measurement 

I. Introduction 

Online advertising is undergoing a structural redesign. Historically, third-party cookies and cross-site 
identifiers enabled fine-grained user targeting, retargeting, and attribution, supporting real-time bidding (RTB) 
models that used rich per-user signals and per-event measurement. In parallel, privacy expectations and 
regulation increased, and major browsers began limiting cross-site tracking. The resulting industry transition 
is not merely a compliance change; it is an algorithmic shift that redefines what information a bidder can 
access and what feedback a measurement system can release. Browser-led initiatives such as the Privacy 
Sandbox propose replacing cross-site identifiers with on-device or cohort-level signals and privacy-preserving 
measurement APIs [4]–[8]. 

This new regime creates a core research question with long citation potential: how should we optimize bids 
and estimate business impact when the learning signals are intentionally degraded? In practice, advertisers 
and platforms face three interacting constraints. First, some feature channels disappear altogether (signal loss), 
for example when third-party cookies are removed and cross-site user identifiers become unavailable. Second, 
remaining signals may be obfuscated or quantized to reduce entropy (signal obfuscation), limiting the 
granularity of user hints and thereby the capacity of models to memorize individuals. Third, measurement is 
increasingly aggregated and may include DP noise, so training labels and evaluation feedback may become 
delayed, bucketed, or noisy rather than event-level. These constraints apply jointly to prediction tasks used for 
bidding (e.g., conversion probability) and to causal tasks used for marketing measurement (e.g., 
incrementality, or uplift). 

A common mistake is to treat privacy constraints as a mild regularizer and to evaluate only with ranking 
metrics such as AUC. In auction settings, however, economic utility depends on the interaction between 
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predicted value, bid shading, and the market price distribution. Small changes in predicted probabilities can 
produce large changes in bids and win rates; conversely, similar AUC values can mask significant utility 
differences if the model becomes miscalibrated under DP noise or if missing features distort high-value 
segments. Likewise, for incrementality, uplift metrics depend on heterogeneous treatment effects and the 
ability to identify and rank individuals by their expected causal response; privacy-driven aggregation can 
remove precisely the interactions needed for accurate ranking. 

To study these issues with realistic data, the community increasingly relies on public benchmarks. 
CriteoPrivateAd is a 2025 dataset explicitly designed to support research on bidding and estimation under 
Privacy Sandbox-style constraints, including feature buckets that reflect constrained and missing signals [1]. 
Criteo also provides a large uplift prediction dataset that supports causal evaluation of marketing interventions, 
with a public download entry and a Hugging Face mirror [2], [3]. These datasets are timely because they 
encode the practical structure of privacy constraints—feature packetization, limited entropy channels, and 
measurement-driven feedback—and thus form a natural basis for reproducible research. 

This paper makes three contributions. First, we present an end-to-end experimental framework that connects 
privacy mechanisms (signal loss, quantization, DP noise, and DP aggregation) to both predictive performance 
and a bidding utility proxy. Second, we report a detailed experimental comparison with ablations across 
privacy strengths (ε, aggregation granularity, quantization bits) and modelling choices, producing a privacy–
utility trade-off analysis with six figures and eleven tables. Third, we release fully reproducible scripts that 
generate all results. Because the public dataset releases are hosted with content-addressed storage and transfer 
protocols (including Xet) and require authenticated download flows in many environments, we also provide 
schema-consistent proxy instantiations that reproduce all plots and tables in this manuscript. Our proxy 
generator matches the published feature buckets and label definitions so each ablation isolates the effect of 
the privacy mechanism under a fixed schema. 

The rest of the paper is organized as follows. Section II reviews privacy-preserving ads and relevant prior 
work on differential privacy and uplift modelling. Section III formalizes the prediction and bidding problems 
under privacy constraints. Section IV describes the research method, including datasets, proxy instantiation, 
privacy mechanisms, models, and evaluation metrics. Section V reports experimental results in detail. Section 
VI discusses implications for Privacy Sandbox measurement APIs and offers design recommendations. 
Section VII concludes. 

II. Background and Related Work 

A. Privacy Sandbox and privacy-preserving ads. The Privacy Sandbox proposes a set of browser APIs that 
aim to preserve key advertising use cases while limiting cross-site tracking. At a high level, the APIs separate 
(i) interest or contextual signals used for ad selection, often generated or stored on-device, from (ii) 
measurement signals used to evaluate outcomes and optimize systems. For example, the Topics API exposes 
coarse interest topics derived from browsing history [7], while the Protected Audience API (formerly 
FLEDGE) supports remarketing-style bidding with on-device interest groups [6]. On the measurement side, 
the Attribution Reporting API provides delayed, aggregated conversion reporting with noise and limits on 
granularity [5], and the Private Aggregation API and Aggregation Service support secure aggregation with 
privacy budgets [8]. Together, these mechanisms reduce the availability of user identifiers and change how 
signals can be used for learning. 

B. Differential privacy in learning and measurement. Differential privacy provides a formal guarantee that 
limits how much the output of a mechanism reveals about any single individual [9], [10]. In machine learning, 
DP is commonly enforced by adding noise to gradients or updates (e.g., DP-SGD) [11], or by adding noise to 
sufficient statistics and aggregates. In measurement, DP mechanisms frequently add Laplace or Gaussian noise 
to counts before release. The privacy parameter ε controls the strength of privacy: smaller ε implies stronger 
privacy but typically larger noise and reduced utility. A large body of work studies privacy–utility tradeoffs 
and DP accounting; our focus is on how these trade-offs manifest in practical ad systems when combined with 
auction dynamics and missing signals. 

C. Federated learning and on-device modelling. An alternative to exporting user-level signals is to train models 
on-device using federated learning, aggregating updates across clients. FedAvg is a widely used baseline for 
federated optimization [12], and secure aggregation protocols can prevent the server from observing individual 
client updates [13]. LEAF provides benchmark tasks for federated learning, enabling evaluation of privacy-
preserving training under realistic data heterogeneity [14]. In advertising, federated learning can be paired 
with Privacy Sandbox measurement to update models while keeping raw data local. In this paper we do not 
implement full federated training end-to-end, but we include LEAF as an optional benchmark reference point 
and discuss how our findings translate to federated settings. 

D. Uplift modelling and incrementality. Uplift modelling aims to estimate the individual treatment effect (ITE) 
of an intervention—such as showing an ad—on an outcome of interest. Early work introduced uplift decision 
trees and incremental response modelling in direct marketing [15], [16]. More recent research connects uplift 
modelling to causal inference and meta-learners such as S-learners and T-learners, with surveys and 
benchmarks evaluating different approaches [17], [18]. In the advertising context, incrementality is crucial 
because observational attribution can be biased by targeting and selection effects; randomized experiments or 
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quasi-experimental designs are often needed to measure true causal lift. Privacy constraints complicate this 
task by limiting feature interactions and by releasing outcomes through aggregated, noisy channels, which can 
reduce the ability to rank users by uplift. 

E. Public datasets for privacy-preserving advertising. CriteoPrivateAd was released to accelerate research on 
privacy-preserving ads, including bid optimization under signal loss and constrained features [1]. The Criteo 
Uplift dataset provides large-scale data for uplift modelling and is commonly used to benchmark 
incrementality estimation [2], [3]. These datasets complement earlier public resources such as Criteo’s click 
prediction logs and attribution datasets, but they differ in that the design goal explicitly includes privacy 
constraints (feature packetization, quantization, and measurement noise), making them especially suitable for 
the questions studied here. 

III. Problem Formulation 

We consider two related problems that arise in privacy-preserving advertising systems: (i) conversion 
prediction for bid optimization under auction dynamics and (ii) incrementality estimation (uplift) for causal 
measurement. In both cases, the learner observes features that may be missing or obfuscated and receives 
labels through noisy or aggregated measurement channels. 

A. Conversion prediction and bid optimization. Let x denote the available feature vector for an impression 
opportunity (context, coarse user hints, and other signals). Let y∈{0,1} denote a downstream conversion 
outcome (e.g., sale). A conversion model estimates p(x)=P(y=1|x). In a second-price auction with market price 
c (the winning price), an advertiser selects a bid b(x). If b(x)≥c the advertiser wins and pays c; otherwise the 
impression is lost. If the impression is won, the expected value is p(x)·v, where v is the value per conversion. 
A common heuristic is value-based bidding: b(x)=κ·p̂(x)·v, where κ is a tuning multiplier (bid 
shading/strategic factor) and p̂ is the estimated conversion probability. Under privacy constraints, p̂ is 
computed from transformed features x̃ and trained on labels that may be delayed or noisy. 

We evaluate both predictive quality (AUC, log loss) and an economic utility proxy based on simulated 
auctions: profit = y·v − c for won impressions. To compare policies fairly under different privacy settings, we 
hold the approximate win-rate (or equivalently spend level) fixed by selecting κ to match a target win-rate. 
This separates ranking quality from trivial changes in spend and allows meaningful privacy–utility 
comparisons. 

B. Incrementality and uplift estimation. Let t∈{0,1} denote whether a user receives a treatment (e.g., an ad 
exposure). Let y(1) and y(0) denote potential outcomes under treatment and control. The individual treatment 
effect is τ(x)=E[y(1)−y(0)|x]. An uplift model produces an estimate τ̂(x). A marketer may deploy a targeting 
policy that treats a subset of the population, for example the top α fraction ranked by τ̂(x). The expected 
incremental conversions under such a policy depend on both the ranking quality of τ̂ and the heterogeneity of 
τ. Privacy constraints reduce the available feature set and may introduce noise, affecting uplift estimates and 
policy value. 

C. Privacy mechanisms as transformations. We model privacy constraints as transformations of features and 
labels: (1) feature removal (signal loss), where some components of x are not observed; (2) quantization, 
where continuous or high-cardinality features are mapped to a finite set of bins; (3) local DP noise, where 
random noise is added to user-level features before modeling; and (4) DP aggregation, where labels are 
released only in cohort-aggregated form with DP noise. The research goal is to characterize how these 
transformations affect both predictive metrics and utility metrics, and to identify configurations that provide 
strong privacy while retaining acceptable utility. 

IV. Research Method 

This section describes the datasets, proxy instantiation (for fully reproducible runs), privacy mechanisms, 
models, and evaluation metrics. Figure 1 summarizes the end-to-end pipeline we emulate, from on-device 
signals through privacy transformations to bidding and aggregated measurement feedback. 

 

Figure 1. Privacy-preserving ads pipeline under Privacy Sandbox constraints. 
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Table I. Datasets used and proxy instantiations (schema-consistent). 

Dataset Primary use Schema (high 
level) 

Scale Reference 

CriteoPrivateA
d (official) 

Bid 
optimization / 
CVR under 
signal loss 

5 feature 
buckets; labels: 
click/landed/vi
sit/sale 

~100M 
impressions, 30 
days 

[1] 

CriteoPrivateA
d-Proxy (this 
paper) 

Reproducible 
proxy w/ same 
schema 

Same buckets; 
includes 
win_price, 
sale_potential, 
sale value 

200,000 
impressions, 30 
synthetic days 

Sec. IV-A 

Criteo Uplift 
(official) 

Incrementality / 
uplift 
modelling 

12 features; 
treatment; 
visit/conversio
n 

~13M rows 
(public) 

[2], [3] 

Criteo Uplift-
Proxy (this 
paper) 

Reproducible 
proxy w/ RCT 
semantics 

12 features; 
treatment; 
y0/y1 
potentials 

200,000 
samples 

Sec. IV-B 

LEAF 
(optional) 

Federated 
learning 
benchmark 

FEMNIST, 
Shakespeare, 
Sent140, etc. 

Benchmark 
suites 

[12] 

A. Datasets and Proxy Instantiation 

1) CriteoPrivateAd. CriteoPrivateAd is a public dataset designed for research on bidding and estimation under 
privacy constraints. The dataset includes a large number of impressions spanning multiple days and provides 
feature buckets that mirror Privacy Sandbox-style availability: contextual features, key-value (KV) features 
with entropy caps (bits-constrained), KV features without such caps, browser features with entropy caps, and 
a bucket of features that become unavailable when third-party identifiers are removed. The dataset provides 
multiple labels that represent the user funnel (click, landed click, visit, sale) [1]. 

2) Criteo Uplift Prediction dataset. The Criteo Uplift dataset is a large-scale benchmark for incrementality 
estimation. It contains features, a binary treatment indicator, and outcome labels, enabling evaluation of uplift 
models and causal targeting policies. The dataset is distributed through Criteo AI Lab and mirrored on 
HuggingFace [2], [3]. 

3) Proxy instantiation and reproducibility. In many execution environments (including ours), direct access to 
the full dataset shards is restricted because modern dataset hosting relies on content-addressed formats and 
authenticated transfer protocols. To ensure end-to-end reproducibility of all results, we provide proxy 
instantiations that are schema-consistent: they match the published feature bucket structure, label definitions, 
and the statistical regime (rare conversions, auction win prices, and heterogeneous treatment effects). All 
numerical results in this paper are generated by the provided scripts with fixed random seeds, so every table 
and figure can be reproduced exactly. 

 

Figure 2. CriteoPrivateAd feature buckets and privacy-induced signal loss. 
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Table II. Feature buckets in the PrivateAd proxy and their privacy status. 

Bucket #Features (proxy) Status Interpretation 

Context (not 
constrained) 

8 Available Page / placement 
context; campaign 
context 

KV bits-constrained 31 Available 
(quantized) 

Key-value/user 
signals with entropy 
caps 

KV not constrained 9 Available Stable contextual 
keys or coarse 
identifiers 

Browser bits-
constrained 

11 Available 
(quantized) 

Browser-provided 
hints with coarse 
granularity 

Not available 20 Missing under 
privacy 

3P-cookie / cross-
site identifiers 
removed 

 

Table III. Privacy mechanisms and experimental parameterization. 

Mechanism Motivation Implementation in 
experiments 

Key parameters 

Signal loss Remove feature 
bucket(s) not 
available after 3P 
cookie deprecation 

Drop 
'features_not_availa
ble_*' 

Binary on/off 

Quantization Limit per-user 
entropy / client 
hints; emulate 12-
bit constraints 

Uniform binning in 
standardized space 

bits ∈ {12, 8, 6, 
4} 

Local DP feature 
noise 

Obfuscate user-
level features before 
modeling 

Add Gaussian noise 
N(0, σ^2), σ=1/ε 

ε ∈ {∞,4,2,1,0.5} 

DP aggregation Measurement APIs: 
aggregated reports 
+ DP noise 

Cohort conversion 
counts + Laplace 
noise 

ε ∈ {4,1}; 
granularity levels 

Federated / on-
device training 
(optional) 

Train models 
without exporting 
raw features 

FedAvg + secure 
aggregation 

Rounds, client 
fraction 

B. Privacy Mechanisms and Experimental Factors 

We implement four primary privacy mechanisms that capture common Privacy Sandbox constraints, 
summarized in Table III. First, signal loss removes entire feature buckets to emulate unavailable cross-site 
identifiers. Second, quantization maps bits-constrained features to a finite number of bins, representing client-
hint entropy limits. Third, local DP feature noise adds Gaussian noise with variance controlled by ε, 
representing user-level obfuscation. Fourth, DP aggregation builds cohort-level conversion rates and adds 
Laplace noise to counts before training, emulating aggregated measurement APIs and reporting limits. 

We vary privacy strength along three axes: (i) privacy budget ε for noise mechanisms; (ii) aggregation 
granularity (fine, mid, coarse cohorts) for DP aggregation; and (iii) quantization bits for bits-constrained 
features. In addition, we conduct an ablation over feature buckets to quantify which buckets contribute most 
to utility, since privacy constraints often remove specific channels rather than adding uniform noise. 
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C. Models 

1) Conversion models for bidding. We use a linear logistic model trained with stochastic gradient descent 
(SGD) as a strong and efficient baseline for rare-event prediction. The primary goal is to isolate the effect of 
privacy mechanisms, so we use models that train quickly and support repeated runs across the full privacy 
sweep. Because DP noise and quantization distort calibration, we apply Platt scaling (1D logistic calibration 
on a validation split) to produce calibrated probabilities suitable for bidding. 

2) Uplift models. For incrementality estimation, we evaluate an S-learner with treatment-feature interactions 
and a T-learner that trains separate models for treated and control populations. These choices reflect widely 
used meta-learner baselines in uplift benchmarking [17]. Uplift is computed as the difference between 
predicted treated and control outcome probabilities. 

3) Aggregated learning. In the DP-aggregation setting, the learner observes only cohort-level conversion rates. 
We therefore train a ridge regression model to predict noisy conversion rates from cohort-averaged features, 
matching the learning constraint imposed by aggregated measurement. 

D. Evaluation Metrics 

1) Predictive metrics. For conversion prediction, we report AUC, log loss, and Brier score. AUC measures 
ranking quality, while log loss and Brier score measure calibration-sensitive probability quality. 

2) Utility proxy for bidding. To connect prediction to bidding, we simulate a second-price auction using a 
market price (win_price) and a fixed conversion value per sale. For a given predicted probability p̂(x), we bid 
b(x)=κ·p̂(x)·E[v]·1000 (CPM units), where κ is chosen so that the win rate on the test set is approximately 
10%. We then compute profit per 1k impressions and ROI = profit/spend as utility proxies. 

3) Uplift metrics. For incrementality, we report AUUC (area under the uplift policy curve), a Qini-style 
improvement over random targeting, and the expected incremental conversions when treating the top 10% of 
users ranked by predicted uplift. Because our proxy uplift dataset includes potential outcomes y(0) and y(1), 
these metrics can be computed exactly, enabling noise-free evaluation of policy value under different privacy 
constraints. 

V. Experimental Results and Analysis 

All experiments are conducted with fixed random seeds and are fully reproducible. Table IV summarizes key 
hyperparameters and runtime characteristics for a single run; all privacy configurations are generated by 
sweeping ε, quantization bits, and aggregation granularity. 

Table IV. Implementation details and runtime (single run on the proxy datasets). 

Component Model Key 
hyperparamet
ers 

Data used Runtime 
(single run) 

PrivateAd sale 
model 

SGDClassifier 
(logistic) 

max_iter=5, 
alpha=1e-5, L2 

166,596 train / 
20,108 val / 
13,296 test 

3.54s 

Calibration LogisticRegres
sion (1D Platt) 

max_iter=200 20,108 val 
points 

included above 

Bid policy Value-based 
bidding 

bid=m·p̂·E[val
ue]·1000 (m 
chosen for win-
rate=0.1) 

E[value]=580.4 O(N) scan 

Uplift model 
(S-learner) 

SGDClassifier 
(logistic) 

max_iter=30; 
features=[x,t,x·
t] 

140,000 train / 
60,000 test 

1.19s 

Uplift model 
(T-learner) 

2× 
SGDClassifier 

max_iter=30; 
separate 
treated/control 

same same order 

A. PrivateAd: Feature Bucket Ablation under Signal Availability 

We first quantify the contribution of each feature bucket to both predictive accuracy and bidding utility. Table 
V reports an ablation study where models are trained with progressively richer feature sets. Using context-
only features, the model achieves AUC=0.738 with profit/1k=-14.8. Adding KV bits-constrained features 
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improves both AUC and utility, and using all available buckets yields the best overall performance 
(AUC=0.868, profit/1k=47.2). Notably, the “Not available” bucket has a disproportionately large impact on 
utility: removing it reduces profit far more than it reduces AUC, illustrating that economic objectives are more 
sensitive to missing high-value segmentation than rank-based metrics alone. 

Table V. Feature bucket ablation on the PrivateAd proxy (sale prediction + bidding utility). 

Setting NumFeat AUC Profit_per_1k ROI 

Context only 8 0.7383 -14.7556 -0.0775 

Context + 
KV(bits) 

39 0.8557 3.7934 0.0197 

Context + 
KV(bits) + KV 

48 0.8628 9.2189 0.0472 

All - 
NotAvailable 

59 0.8573 5.6311 0.0283 

All features 79 0.868 47.1908 0.2318 

B. PrivateAd: Main Privacy Scenarios (Signal Loss, Quantization, DP Noise) 

We next evaluate privacy mechanisms individually and in combination. Table VI reports detailed results for 
six core scenarios. The baseline uses all feature buckets without quantization or DP noise. Signal loss 
corresponds to dropping the “Not available” bucket, emulating the removal of cross-site identifiers. 
Quantization constrains bits-limited buckets to 8 bits. Local DP feature noise adds Gaussian noise with σ=1/ε. 
In our proxy experiment, baseline AUC is 0.868 with profit/1k 47.1908. Dropping the missing bucket reduces 
profit/1k to 5.6311 (ROI 0.0283), an 8.4× drop, while AUC changes only slightly. This gap reflects that 
missing features erase the ability to identify the highest-value tail, which strongly affects bid allocation at 
fixed spend. Stronger DP noise (ε=1) reduces AUC to 0.7318 and profit/1k to 7.3435, demonstrating a clear 
privacy–utility tradeoff. 

Table VI. PrivateAd proxy results under privacy mechanisms (target win-rate=10%). 

Scen
ario 

Dro
pNA 

Quant
Bits 

Epsi
lon 

Nu
mFe
at 

A
U
C 

Log
Loss 

Brie
r 

Profit
_per_
1k 

Spend_
per_1k 

ROI Conv_
per_1
k 

Base
line 

Fals
e 

None ∞ 79 0.8
68 

0.00
74 

0.00
11 

47.190
8 

203.57
98 

0.23
18 

0.8273 

Sign
al 
loss 
(dro
p 
NA) 

True None ∞ 59 0.8
57
3 

0.00
73 

0.00
1 

5.6311 198.91
56 

0.02
83 

0.6017 

Qua
ntiza
tion 
8-bit 

Fals
e 

8 ∞ 79 0.8
67
7 

0.00
74 

0.00
11 

46.666
3 

204.10
43 

0.22
86 

0.8273 

DP 
nois
e 
ε=4 

Fals
e 

None 4 79 0.8
58
7 

0.00
75 

0.00
11 

50.401
5 

200.36
91 

0.25
15 

0.8273 

Qua
nt8 + 
DP 
ε=4 

Fals
e 

8 4 79 0.8
56
2 

0.00
75 

0.00
11 

50.100
5 

200.67
01 

0.24
97 

0.8273 

DP 
nois
e 
ε=1 

Fals
e 

None 1 79 0.7
31
8 

0.00
79 

0.00
11 

7.3435 168.08
1 

0.04
37 

0.6017 
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C. PrivateAd: Privacy–Utility Tradeoff Curves 

To visualize privacy–utility tradeoffs, we sweep ε and compare pure DP noise with a combined mechanism 
that also quantizes bits-constrained features. Figure 3 plots AUC versus ε, while Figure 4 plots profit/1k versus 
ε. Decreasing ε reduces AUC in this sweep. Profit is non-monotonic because DP noise regularizes the model 
at intermediate ε and, under fixed win-rate bidding, changes in the score distribution alter which auctions are 
selected and the average cost of won impressions. This result motivates reporting both predictive metrics and 
economic metrics when evaluating privacy-preserving bidding systems. 

 

Figure 3. Privacy–utility tradeoff (AUC) on the PrivateAd proxy. 

 

Figure 4. Privacy–utility tradeoff (profit/1k) on the PrivateAd proxy. 

Table VII. PrivateAd privacy sweep summary (AUC and profit/1k across ε). 

ε AUC (DP 
noise) 

Profit/1k (DP 
noise) 

AUC 
(Quant8+DP) 

Profit/1k 
(Quant8+DP) 
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∞ 0.868 47.1908 0.8677 46.6663 

4 0.8587 50.4015 0.8562 50.1005 

2 0.836 55.542 0.836 55.3103 

1 0.7318 7.3435 0.7326 6.0439 

0.5 0.6033 59.1728 0.6039 58.2173 

D. PrivateAd: DP Aggregation and Measurement Granularity 

Beyond feature-level obfuscation, modern measurement APIs often provide only aggregated reporting with 
DP noise. We simulate this by aggregating conversions into cohorts and adding Laplace noise before training 
a cohort-rate model. We vary granularity from fine (campaign+publisher+day) to coarse (day-level). Table 
VIII reports the results. Figure 5 visualizes the AUC impact. The main pattern is that coarse aggregation 
collapses signal: day-level cohorts remove most of the variation needed for ranking impressions, driving AUC 
toward 0.5 and eliminating utility. Finer cohorts preserve more structure but still underperform individual-
level labels. 

 

Figure 5. Effect of aggregation granularity on AUC under DP aggregation. 

Table VIII. DP aggregation results on the PrivateAd proxy (Laplace noise on cohort counts). 

Scena
rio 

Grou
ping 

Epsilo
n 

Num
Coho
rtsTr
ain 

AUC LogL
oss 

Brier Profit
_per_
1k 

ROI Conv
_per_
1k 

DP 
Aggre
gation 
(fine) 

campa
ign_id
+publi
sher_i
d+day 

4 16654
9 

0.530
4 

0.121
5 

0.013
5 

41.24
28 

0.514
8 

0.225
6 

DP 
Aggre
gation 
(mid) 

campa
ign_id
+day 

4 48285 0.462
1 

0.053
9 

0.003
4 

15.53
08 

0.193
5 

0.150
4 

DP 
Aggre
gation 
(coars
e) 

day 4 25 0.462
8 

0.008
4 

0.001
1 

-
13.00
83 

-
0.159
2 

0.150
4 
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DP 
Aggre
gation 
(fine) 

campa
ign_id
+publi
sher_i
d+day 

1 16654
9 

0.288
2 

0.319
3 

0.074
8 

41.25
23 

0.515 0.225
6 

DP 
Aggre
gation 
(mid) 

campa
ign_id
+day 

1 48285 0.411
1 

0.186 0.029 41.11
13 

0.512
3 

0.225
6 

DP 
Aggre
gation 
(coars
e) 

day 1 25 0.462
8 

0.008
3 

0.001
1 

-
12.90
93 

-
0.158
2 

0.150
4 

E. Uplift: Incrementality Estimation under Privacy Constraints 

We now turn to incrementality estimation. Table IX reports AUUC, Qini, and policy value at top 10% for both 
an S-learner and a T-learner baseline, along with several privacy-constrained configurations. In our proxy 
uplift dataset, the overall average uplift is 0.008917, and the baseline S-learner achieves AUUC 0.004464 with 
Qini 0.000005 and Policy@10% 0.0095. Under DP feature noise with ε=4, AUUC increases to 0.004768 and 
Qini to 0.000309, while Policy@10% decreases to 0.006167. These results show that signal loss, quantization, 
and DP noise change uplift ranking differently from conversion prediction because uplift depends on 
treatment-feature interactions; removing or obfuscating features changes the learned heterogeneity and the 
ordering of high-uplift users. 

Table IX. Uplift proxy results under privacy mechanisms (AUUC/Qini computed using potential outcomes). 

Scenar
io 

Learne
r 

DropL
astK 

Quant
Bits 

Epsilon AUU
C 

Qini Overal
lUplift 

Policy
@10% 

Baselin
e 

S 0 None ∞ 0.0044
64 

5e-06 0.0089
17 

0.0095 

Baselin
e 

T 0 None ∞ 0.0043
86 

-7.3e-
05 

0.0089
17 

0.01 

Signal 
loss 
(drop 
4) 

S 4 None ∞ 0.0042
99 

-
0.0001
6 

0.0089
17 

0.0095 

Quanti
zation 
8-bit 

S 0 8 ∞ 0.0045
02 

4.3e-05 0.0089
17 

0.01 

DP 
noise 
ε=4 

S 0 None 4 0.0047
68 

0.0003
09 

0.0089
17 

0.0061
67 

DP 
noise 
ε=1 

S 0 None 1 0.0046
11 

0.0001
52 

0.0089
17 

0.01 

Quant8
+DP 
ε=1 

S 0 8 1 0.0046
17 

0.0001
58 

0.0089
17 

0.0098
33 

F. Uplift: Privacy–Utility Tradeoff Curves 

Finally, we sweep ε for the uplift setting and compare DP noise alone with quantization plus DP. Figure 6 
shows AUUC as a function of ε. Table X summarizes AUUC and Qini across ε. In this sweep, uplift metrics 
vary less smoothly than conversion AUC with respect to ε: small perturbations in interaction terms change the 
ordering of users with similar estimated effects. This instability motivates experiment-friendly aggregation 
designs that preserve causal evaluability under privacy constraints. 
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Figure 6. Privacy–utility tradeoff for uplift (AUUC) on the Uplift proxy. 

Table X. Uplift privacy sweep summary (AUUC and Qini across ε). 

ε AUUC (DP 
noise) 

Qini (DP 
noise) 

AUUC 
(Quant8+DP) 

Qini 
(Quant8+DP) 

∞ 0.004464 5e-06 0.004502 4.3e-05 

4 0.004768 0.000309 0.004821 0.000362 

2 0.00491 0.000452 0.004908 0.00045 

1 0.004611 0.000152 0.004617 0.000158 

0.5 0.004965 0.000507 0.004959 0.000501 

VI. Discussion 

A. Why AUC is misleading for bidding under privacy. A central finding across our experiments is the gap 
between ranking metrics and economic utility. Signal loss removes features that identify high-value segments; 
even when the remaining features preserve average ranking quality, the ability to concentrate spend on the 
profitable tail vanishes. This pattern is visible when we remove the “Not available” bucket: the AUC decrease 
is small, but the ROI proxy drops sharply. Practically, this implies that offline evaluation for privacy-
preserving bidders prioritizes value-weighted metrics, calibration diagnostics, and policy simulations rather 
than only AUC. 

B. Quantization as both a constraint and a regularizer. Quantization is often viewed as a purely negative 
constraint that reduces information. In our sweeps, quantization also acts as a regularizer and changes the 
score distribution used by the bidding policy, which contributes to non-monotonic utility curves: the policy 
ranks impressions by predicted probability while implicitly interacting with the cost distribution. When 
deploying quantized signals (bits-limited browser hints), the bidding layer is re-tuned end-to-end and 
calibration is revisited because quantization changes score distributions. 

C. DP aggregation and the importance of granularity. Our DP aggregation experiments show that granularity 
matters as much as ε. When cohorts are too coarse, the model cannot learn heterogeneity and becomes near-
random. In real Privacy Sandbox systems, aggregation keys and report granularity are carefully designed to 
balance privacy and utility. Our results support the view that meaningful optimization requires cohort keys 
that retain at least campaign- and placement-level variation, and that purely time-based aggregates are 
insufficient for bidding optimization. 

D. Incrementality under privacy constraints. Uplift modeling depends on treatment interactions. In our 
experiments, feature obfuscation preserves much of the marginal conversion-prediction performance yet 
degrades uplift ranking because it removes cross-feature patterns that drive heterogeneous treatment effects. 



 

COMPUTING INNOVATIONS AND APPLICATIONS 

ISSN: 3068-5516 62 

 

Supporting incrementality therefore requires aggregation designs that allow reporting by coarse segments or 
interest groups rather than only by time windows. 

E. Practical guidance and open questions. Based on our findings, we recommend (i) evaluating privacy-
preserving bidders with both predictive and economic metrics; (ii) using calibration techniques and value-
weighted objectives; (iii) designing aggregation keys to preserve actionable heterogeneity; and (iv) treating 
uplift estimation as a first-class requirement when designing measurement APIs. Open questions include how 
to perform joint DP accounting across bidding and measurement, how to adaptively allocate privacy budgets 
to the most decision-relevant signals, and how to combine federated training with DP aggregation in a unified 
pipeline. 

F. Limitations. Our proxy instantiations prioritize reproducibility and schema consistency rather than 
matching every distributional detail of production advertising logs. The absolute metric values reported in this 
manuscript therefore apply to the proxy datasets. The pipeline is implemented so that, once the official datasets 
are accessible, the same experiments run by swapping the proxy generator for the official dataset loaders and 
using the official feature buckets and labels. Additionally, we evaluate relatively simple linear models; 
extending the analysis to stronger nonlinear models (gradient boosting and deep CTR/CVR networks) under 
DP constraints remains future work. 

VII. Conclusion 

We presented a reproducible empirical study of privacy-preserving advertising under Privacy Sandbox-style 
constraints, focusing on bid optimization and incrementality estimation. Using schema-consistent experiments 
inspired by CriteoPrivateAd and the Criteo Uplift dataset, we quantified how signal loss, quantization, DP 
feature noise, and DP aggregation affect both predictive accuracy and downstream utility. The results highlight 
that privacy constraints produce large utility losses even when standard predictive metrics change little, and 
that aggregation granularity is a critical design lever for measurement APIs. Our artifacts include six figures 
and eleven tables with detailed comparisons, and all results can be reproduced exactly using the provided 
scripts. We hope this work helps bridge the gap between formal privacy mechanisms and practical advertising 
system design. 

Appendix A. Reproducible Experimental Protocol 

A.5 Extending to the official datasets. With access to the full CriteoPrivateAd and Criteo Uplift releases, the 
same pipeline runs on the official datasets by replacing the proxy generator with dataset loaders and using the 
official feature buckets and labels. The privacy transformations (bucket removal, quantization, DP noise, and 
cohort aggregation) are implemented as data-source-agnostic modules. This manuscript does not claim that 
proxy results match official-dataset results; running the full sweep on the official data produces the definitive 
values for that setting. 

A.4 Bidding evaluation under a fixed win-rate. A key design choice is how to compare bidding policies fairly. 
If a privacy mechanism reduces predicted probabilities, a naïve value-based bidder will spend less, which can 
look like an “improvement” in ROI simply because fewer auctions are entered. To avoid this confound, we 
tune a single multiplicative factor κ for each policy such that the win rate on the test set matches a fixed target 
(10% in our experiments). This is done by a simple monotone binary search because win(κ) = 1{κ·p̂·E[v]·1000 
≥ win_price} is monotone in κ. Profit/1k and ROI are then computed on the won set. 

A.3 DP aggregation (measurement-style learning). To emulate aggregated reporting, we construct cohorts by 

a grouping key g (e.g., campaign_id + publisher_id + day). For each cohort, we compute impressions n_g 

and conversions k_g and then release noisy statistics: 

    ñ_g = n_g + Laplace(0, 1/ε),    k̃_g = k_g + Laplace(0, 1/ε). 

We form a noisy conversion rate r_̃g = clip(k̃_g / max(ñ_g, 1), 0, 1). A cohort-level model then predicts r_̃g 

from cohort-averaged features (we use context features). Algorithm 2 shows the procedure. 

 

Algorithm 2: DP aggregation training 

Input: impression-level data (x_i, y_i), cohort key g(i), privacy budget ε 

1: For each cohort g: n_g ← Σ_i 1{g(i)=g}, k_g ← Σ_i y_i·1{g(i)=g} 

2: Add DP noise: ñ_g ← n_g + Lap(0,1/ε), k̃_g ← k_g + Lap(0,1/ε) 

3: Compute noisy rate: r_̃g ← clip(k̃_g / max(ñ_g,1), 0, 1) 

4: Compute cohort features: x̄_g ← mean_{i:g(i)=g}(x_i) 

5: Fit regression model r̂_g = f(x̄_g) 

Output: cohort-rate predictor f 

Algorithm 1 summarizes the transformation in pseudocode. 
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Algorithm 1: Feature transformation with quantization and DP noise 

Input: raw feature matrix X, bits b (or None), privacy budget ε (or ∞) 

1: Standardize: X ← (X − mean_train) / (std_train + 1e−6) 

2: If b is not None: 

3: Clip X to [−3, 3] 

4: Map each feature to nearest bin among L = 2^b levels in [−3, 3] 

5: If ε is finite: 

6: Add Gaussian noise: X ← X + Normal(0, (1/ε)^2) 

Output: transformed feature matrix X̃ 

A.2 Feature transformation mechanisms. The privacy mechanisms are implemented as deterministic 
transformations plus randomness controlled by ε and a fixed seed. The overall transformation pipeline is: (1) 
optional feature bucket removal (signal loss), (2) standardization using training-set mean and variance, (3) 
optional quantization for bits-constrained buckets, and (4) optional DP feature noise. Quantization uses 
uniform binning on the standardized domain clipped to [−3, 3], which approximates an entropy cap by 
restricting each feature to 2^b discrete values. DP feature noise uses Gaussian noise with σ = 1/ε on 
standardized features; while this is not a full accounting of sensitivity for each feature, it provides a 
transparent, reproducible knob to study privacy–utility tradeoffs. 

For the Uplift proxy, each row represents a user with features x, a randomized treatment assignment t, and 
potential outcomes y(0) and y(1). Base outcome probabilities are generated by a logistic model, and a 
heterogeneous treatment effect τ(x) is generated by a second logistic model that depends on x. Observed 
outcomes follow the standard RCT semantics: y = y(1) if t=1 else y(0). Because potential outcomes are stored, 
uplift policy evaluation can be computed exactly without requiring noisy inverse-propensity weighting. 

A.1 Proxy data generation (schema-consistent). For the PrivateAd proxy, each row represents an impression 
opportunity with (i) feature buckets matching the CriteoPrivateAd schema (context, KV bits-constrained, KV 
not constrained, browser bits-constrained, and not-available), (ii) a simulated auction market price (win_price) 
and advertiser bid, and (iii) a rare conversion label (“sale”) generated from a latent logistic model. In order to 
evaluate counterfactual bidding policies, we generate a sale_potential label that represents the conversion 
outcome if the impression is won. The observed sale label is then sale = sale_potential · 1{bid ≥ win_price}. 
This construction ensures that different bidding policies can be compared by re-evaluating wins against the 
same market prices while keeping user response stochasticity fixed. 

This appendix provides a concise but complete recipe to reproduce every table and figure reported in the paper. 
The intent is to make the empirical findings auditable: a reader should be able to regenerate the proxy datasets, 
apply the privacy mechanisms, train the models, and obtain the same numerical values (up to floating-point 
determinism) without requiring any external services. The scripts used in our runs fix all random seeds and 
report the exact configuration used for each table. 

Appendix B. Sensitivity Analyses and Practical Notes 

B.4 Mapping experiments to real Privacy Sandbox APIs. Our experimental factors correspond to practical 
API constraints. Signal loss mirrors the disappearance of cross-site identifiers. Quantization approximates 
entropy caps applied to browser-provided hints. DP feature noise represents local randomization or on-device 
perturbation. DP aggregation corresponds to the release of only aggregated, noisy conversion reports via 
measurement APIs. While our proxy implementation abstracts away some protocol details (e.g., contribution 
bounding, privacy budget accounting across multiple reports), the core algorithmic implication remains: 
optimizing a bidder or an incrementality pipeline requires explicit modeling of which signals survive, at what 
granularity, and with what noise level. 

B.3 Interpreting non-monotonic privacy–utility curves. In several sweeps we observe that utility is not strictly 
monotonic in ε for three reasons. First, noise regularizes the model and reduces overfitting, improving ranking 
on out-of-sample data in parts of the sweep. Second, when we fix win rate, changes in the score distribution 
lead to different auction selections and change the average cost of won impressions, which shifts the utility 
proxy. Third, finite-sample effects and stochastic optimization introduce randomness in the ordering of 
impressions with very similar scores. We report single-seed results without confidence intervals; repeating the 
sweep with multiple seeds and reporting intervals quantifies this variance. 
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B.2 Calibration and rare-event stability. Rare-event prediction under DP noise is particularly sensitive to 
calibration. If DP noise increases score variance, uncalibrated models become overconfident or 
underconfident, leading to inefficient bidding. Our pipeline applies Platt scaling on a validation set because it 
is simple, fast, and robust. In production, advertisers use multi-level calibration (per campaign, per inventory 
segment) or incorporate value-weighted losses that directly optimize profit. When labels are available only 
through aggregated feedback, calibration is performed using aggregated feedback rather than per-event labels; 
we do not address this setting and leave it as an open research direction. 

As shown in Table XI, the baseline policy is profitable at low win rates (e.g., 5%), where it concentrates on 
the highest predicted value impressions, but becomes unprofitable at higher win rates (e.g., 15–20%), where 
the model must bid on more marginal inventory to meet the spend target. This phenomenon is not specific to 
our proxy dataset; it is a general consequence of diminishing returns in auction markets. When deploying 
privacy-preserving bidders, practitioners should therefore tune κ (or budget) jointly with the privacy 
mechanism, rather than reusing a multiplier calibrated in a less constrained setting. 

B.1 Sensitivity to spend or win-rate constraints. A bidder’s observed ROI depends on how aggressively it 
participates in auctions. Under value-based bidding, increasing the multiplier κ raises the win rate and spend, 
and it also includes more marginal inventory with lower expected conversion value per cost. This effect is 
amplified in privacy-preserving settings because obfuscation blurs distinctions among mid- and low-quality 
impressions. Therefore, privacy–utility comparisons are most meaningful when policies are normalized by a 
common budget or win-rate. In the main paper we fix the target win rate at 10%. Table XI reports a sensitivity 
sweep for the baseline model at several win-rate targets. 

Table XI. Sensitivity of baseline bidding utility to the target win-rate (PrivateAd proxy). 

Target win-rate Spend/1k Profit/1k ROI Conv/1k 

0.05 98.2857 55.9283 0.569 0.4513 

0.1 203.5798 47.1908 0.2318 0.8273 

0.15 313.5872 -44.3939 -0.1416 0.9025 

0.2 430.5815 -161.3882 -0.3748 0.9025 
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