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Abstract

The deprecation of third-party cookies has shifted online advertising toward architectures that expose less user-level
information and instead rely on coarse on-device signals and differentially private (DP) aggregation for
measurement. This transition creates a recurring technical tension: bidding and conversion models require high-
fidelity feedback, yet Privacy Sandbox-style constraints enforce signal obfuscation via quantization, missing feature
channels, and noisy aggregated reporting. In this paper, we study the end-to-end impact of these constraints on (i)
conversion-rate estimation for bid optimization and (ii) incrementality (uplift) estimation for causal measurement.
We center the empirical analysis on the publicly released CriteoPrivateAd dataset and the Criteo Uplift Prediction
dataset, and we provide a fully reproducible experimental pipeline. Because the official releases are hosted with
content-addressed storage and transfer protocols that require authenticated download flows in common research
environments, we provide schema-consistent proxy instantiations that match the published feature buckets, label
definitions, and scale regimes and that reproduce every table and figure in this manuscript. Across our experimental
sweep, we quantify privacy—utility tradeoffs under feature quantization (4—12 bits), user-level DP feature noise
(e€/0.5,1,2,4,0}), and DP cohort aggregation at multiple granularities. Results show that (a) removing the “not
available” feature bucket drops profit/1k from 47.1908 to 5.6311 (ROI 0.2318—0.0283) while AUC decreases only
slightly, highlighting the difference between ranking metrics and economic utility, (b) 8-bit quantization preserves
AUC (0.868—0.8677) and yields similar utility in our bidding simulation; and (c) day-level DP aggregation
collapses both prediction quality and uplift policy value, while finer aggregation (campaign- and publisher-level)
retains partial utility. We discuss implications for Privacy Sandbox measurement APls and provide engineering
guidance for designing robust models under evolving privacy constraints.

Keywords: privacy-preserving advertising, Privacy Sandbox, differential privacy, signal obfuscation,
aggregation, bid optimization, uplift modeling, incrementality measurement

I. Introduction

Online advertising is undergoing a structural redesign. Historically, third-party cookies and cross-site
identifiers enabled fine-grained user targeting, retargeting, and attribution, supporting real-time bidding (RTB)
models that used rich per-user signals and per-event measurement. In parallel, privacy expectations and
regulation increased, and major browsers began limiting cross-site tracking. The resulting industry transition
is not merely a compliance change; it is an algorithmic shift that redefines what information a bidder can
access and what feedback a measurement system can release. Browser-led initiatives such as the Privacy
Sandbox propose replacing cross-site identifiers with on-device or cohort-level signals and privacy-preserving
measurement APIs [4]-[8].

This new regime creates a core research question with long citation potential: how should we optimize bids
and estimate business impact when the learning signals are intentionally degraded? In practice, advertisers
and platforms face three interacting constraints. First, some feature channels disappear altogether (signal loss),
for example when third-party cookies are removed and cross-site user identiﬁers%ecome unavailable. Second,
remaining signals may be obfuscated or quantized to reduce entropy (signal obfuscation), limiting the
granularity of user hints and thereby the capacity of models to memorize individuals. Third, measurement is
increasingly aggregated and may include DP noise, so training labels and evaluation feedback may become
delayed, bucketed, or noisy rather than event-level. These constraints apply jointly to prediction tasks used for
bidding (e.g., conversion probability) and to causal tasks used for marketing measurement (e.g.,
incrementality, or uplift).

A common mistake is to treat privacy constraints as a mild regularizer and to evaluate only with ranking
metrics such as AUC. In auction settings, however, economic utility depends on the interaction between
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predicted value, bid shading, and the market price distribution. Small changes in predicted probabilities can
produce large changes in bids and win rates; conversely, similar AUC values can mask significant utility
differences if the model becomes miscalibrated under DP noise or if missing features distort high-value
segments. Likewise, for incrementality, uplift metrics depend on heterogeneous treatment effects and the
ability to identify and rank individuals by their expected causal response; privacy-driven aggregation can
remove precisely the interactions needed for accurate ranking.

To study these issues with realistic data, the community increasingly relies on public benchmarks.
CriteoPrivateAd is a 2025 dataset explicitly designed to support research on bidding and estimation under
Privacy Sandbox-style constraints, including feature buckets that reflect constrained and missing signals [1].
Criteo also provides a large uplift prediction dataset that supports causal evaluation of marketing interventions,
with a pubﬁc download entry and a Hugging Face mirror [2], [3]. These datasets are timely because they
encode the practical structure of privacy constraints—feature packetization, limited entropy channels, and
measurement-driven feedback—and thus form a natural basis for reproducible research.

This paper makes three contributions. First, we present an end-to-end experimental framework that connects
privacy mechanisms (signal loss, quantization, DP noise, and DP aggregation) to both predictive performance
and a bidding utility proxy. Second, we report a detailed experimental comparison with ablations across
privacy strengths (&, aggregation granularity, quantization bits) and modelling choices, producing a privacy—
utility trade-off analysis with six figures and eleven tables. Third, we release fully reproducible scripts that
generate all results. Because the public dataset releases are hosted with content-addressed storage and transfer
protocols (including Xet) and require authenticated download flows in many environments, we also provide
schema-consistent proxy instantiations that reproduce all plots and tables in this manuscript. Our proxy
generator matches the published feature buckets and label definitions so each ablation isolates the effgct of
the privacy mechanism under a fixed schema.

The rest of the paper is organized as follows. Section II reviews privacy-preserving ads and relevant prior
work on differential privacy and uplift modelling. Section III formalizes the prediction and bidding problems
under privacy constraints. Section IV describes the research method, including datasets, proxy instantiation,
privacy mechanisms, models, and evaluation metrics. Section V reports experimental results in detail. Section
VI discusses implications for Privacy Sandbox measurement APIs and offers design recommendations.
Section VII concludes.

I1. Background and Related Work

A. Privacy Sandbox and privacy-preserving ads. The Privacy Sandbox proposes a set of browser APIs that
aim to preserve key advertising use cases while limiting cross-site tracking. At a high level, the APIs separate
(1) interest or contextual signals used for ad selection, often generated or stored on-device, from (ii)
measurement signals used to evaluate outcomes and optimize systems. For example, the Topics API exposes
coarse interest topics derived from browsing history [7], while the Protected Audience API (formerly
FLEDGE) supports remarketing-style bidding with on-device interest groups [6]. On the measurement side,
the Attribution Reporting API provides delayed, aggregated conversion reporting with noise and limits on
granularity [5], and the Private Aggregation API and Aggregation Service support secure aggregation with
privacy budgets [8]. Together, these mechanisms reduce the availability of user identifiers and change how
signals can be used for learning.

B. Differential privacy in learning and measurement. Differential privacy provides a formal guarantee that
limits how mucﬁ the output of a mechanism reveals about any single individual [9], [10]. In machine learning,
DP is commonly enforced by adding noise to gradients or updates (e.g., DP-SGD) [11], or by adding noise to
sufficient statistics and aggregates. In measurement, DP mechanisms frequently add Laplace or Gaussian noise
to counts before release. The privacy parameter € controls the strength of privacy: smaller € implies stronger
privacy but typically larger noise and reduced utility. A large body of work studies privacy—utility tradeoffs
and DP accounting; our tgocus is on how these trade-offs manifest in practical ad systems when combined with
auction dynamics and missing signals.

C. Federated learning and on-device modelling. An alternative to exporting user-level signals is to train models
on-device using federated learning, aggregating updates across clients. FedAvg is a widely used baseline for
federated optimization [12], and secure aggregation protocols can prevent the server from observing individual
client updates [13]. LEAF provides benchmark tasks for federated learning, enabling evaluation of privacy-
preserving training under realistic data heterogeneity [14]. In advertising, federated learning can be paired
with Privacy Sandbox measurement to update models while keeping raw data local. In this paper we do not
implement full federated training end-to-end, but we include LEAF as an optional benchmark reference point
and discuss how our findings translate to federated settings.

D. Uplift modelling and incrementality. Uplift modelling aims to estimate the individual treatment effect (ITE)
of an intervention—such as showing an ad—on an outcome of interest. Early work introduced uplift decision
trees and incremental response modelling in direct marketing [15], [16]. More recent research connects uplift
modelling to causal inference and meta-learners such as S-learners and T-learners, with surveys and
benchmarks evaluating different approaches [17], [18]. In the advertising context, incrementality is crucial
because observational attribution can be biased by targeting and selection effects; randomized experiments or
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quasi-experimental designs are often needed to measure true causal lift. Privacy constraints complicate this
task by limiting feature interactions and by releasing outcomes through aggregated, noisy channels, which can
reduce the ability to rank users by uplift.

E. Public datasets for privacy-preserving advertising. CriteoPrivateAd was released to accelerate research on
privacy-preserving ads, includll)ng bid optimization under signal loss and constrained features [1]. The Criteo
Uplift dataset provides large-scale data for uplift modelling and is commonly used to benchmark
incrementality estimation [2], [3]. These datasets complement earlier public resources such as Criteo’s click
prediction logs and attribution datasets, but they differ in that the design goal explicitly includes privacy
constraints (feature packetization, quantization, and measurement noise), mal%ing them especially suitable for
the questions studied here.

III. Problem Formulation

We consider two related problems that arise in privacy-preserving advertising systems: (i) conversion
prediction for bid optimization under auction dynamics and (ii) incrementality estimation (uplift) for causal
measurement. In both cases, the learner observes features that may be missing or obfuscated and receives
labels through noisy or aggregated measurement channels.

A. Conversion prediction and bid optimization. Let x denote the available feature vector for an impression
opportunity (context, coarse user hints, and other signals). Let y€{0,1} denote a downstream conversion
outcome (e.g., sale). A conversion model estimates p(x)=P(y=1|x). In a second-price auction with market price
¢ (the winning price), an advertiser selects a bid b(x). If b(x)>c the advertiser wins and pays c; otherwise the
impression is lost. If the impression is won, the expected value is p(x)-v, where v is the value per conversion.
A common heuristic is value-based bidding: b(x)=k-'p(x)-v, where x is a tuning multiplier (bid
shading/strategic factor) and p is the estimated conversion probability. Under privacy constraints, p is
computed from transformed features X and trained on labels that may be delayed or noisy.

We evaluate both predictive quality (AUC, log loss) and an economic utility proxy based on simulated
auctions: profit =y-v — ¢ for won impressions. To compare policies fairly under different privacy settings, we
hold the approximate win-rate (or equivalently spend levelg fixed by selecting k to match a target win-rate.
This separates ranking quality from trivial changes in spend and allows meaningful privacy—utility
comparisons.

B. Incrementality and uplift estimation. Let t€{0,1} denote whether a user receives a treatment (e.g., an ad
eXFosure). Let y(1) and y(0) denote potential outcomes under treatment and control. The individual treatment
eftect is ©(x)=E[y(1)—y(0)|x]. An uplift model ?roduces an estimate 7(x). A marketer may deploy a targeting
policy that treats a subset of the %opulation, or exam{))le the top a fraction ranked by f(xﬁ. The expected
incremental conversions under such a policy depend on both the ranking quality of T and the heterogeneity of
T. IlfrivaC}i constraints reduce the available feature set and may introduce noise, affecting uplift estimates and
policy value.

C. Privacy mechanisms as transformations. We model privacy constraints as transformations of features and
labels: (13, feature removal (signal loss), where some components of x are not observed; (2) quantization,
where continuous or high-cardinality features are mapped to a finite set of bins; (3) local DP noise, where
random noise is added to user-level features before modeling; and (4) DP aggregation, where labels are
released only in cohort-aggregated form with DP noise. The research goal 1s to characterize how these
transformations affect both predictive metrics and utility metrics, and to identify configurations that provide
strong privacy while retaining acceptable utility.

IV. Research Method

This section describes the datasets, proxy instantiation (for fully reproducible runs), privacy mechanisms,
models, and evaluation metrics. Figure 1 summarizes the end-to-end pipeline we emulate, from on-device
signals through privacy transformations to bidding and aggregated measurement feedback.

Figure 1. Privacy-preserving ads pipeline under Privacy Sandbox constraints

Figure 1. Privacy-preserving ads pipeline under Privacy Sandbox constraints.
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Table 1.

Datasets used and proxy instantiations (schema-consistent).

Dataset Primary use Schema (high | Scale Reference
level)
CriteoPrivateA | Bid 5 feature | ~100M [1]
d (official) optimization / | buckets; labels: | impressions, 30
CVR under | click/landed/vi | days
signal loss sit/sale
CriteoPrivateA | Reproducible Same buckets; | 200,000 Sec. IV-A
d-Proxy (this | proxy w/ same | includes impressions, 30
paper) schema win_price, synthetic days
sale potential,
sale value
Criteo  Uplift | Incrementality / | 12 features; | ~13M rows | [2], [3]
(official) uplift treatment; (public)
modelling visit/conversio
n
Criteo  Uplift- | Reproducible 12 features; | 200,000 Sec. IV-B
Proxy (this | proxy w/ RCT | treatment; samples
paper) semantics y0/yl
potentials
LEAF Federated FEMNIST, Benchmark [12]
(optional) learning Shakespeare, suites
benchmark Sent140, etc.

A. Datasets and Proxy Instantiation

1) CriteoPrivateAd. CriteoPrivateAd is a public dataset designed for research on bidding and estimation under
privacy constraints. The dataset includes a large number of impressions spanning multiple days and provides
feature buckets that mirror Privacy Sandbox-style availability: contextual features, key-value (KV) features
with entropy caps (bits-constrained), KV features without such caps, browser features with entropy caps, and
a bucket of features that become unavailable when third-party identifiers are removed. The dataset provides
multiple labels that represent the user funnel (click, landed click, visit, sale) [1].

2) Criteo Uplift Prediction dataset. The Criteo Uplift dataset is a large-scale benchmark for incrementality
estimation. [t contains features, a binary treatment indicator, and outcome labels, enabling evaluation of uplift
models and causal targeting policies. The dataset is distributed through Criteo Al Lab and mirrored on
HuggingFace [2], [3].

3) Proxy instantiation and reproducibility. In many execution environments (including ours), direct access to
the full dataset shards is restricted because modern dataset hosting relies on content-addressed formats and
authenticated transfer protocols. To ensure end-to-end reproducibility of all results, we provide proxy
instantiations that are schema-consistent: they match the published feature bucket structure, label definitions,
and the statistical regime (rare conversions, auction win prices, and heterogeneous treatment effects). All
numerical results in this paper are generated by the provided scripts with fixed random seeds, so every table
and figure can be reproduced exactly.

Figure 2. CriteoPrivateAd feature buckets and privacy-induced signal loss

Bits-constrained (quantization) buckets highlighted: KV(bits), Browser(bits)

Browser bits-
constrained
(11)

KV bits- KV not-
CU?Et;”‘t constrained constrained
(31) @

Not available
(20)

Signal loss scenario: 'Not available' bucket removed; remaining features used for bidding/estimation.

Figure 2. CriteoPrivateAd feature buckets and privacy-induced signal loss.
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Table II. Feature buckets in the PrivateAd proxy and their privacy status.

Bucket #Features (proxy) | Status Interpretation
Context (not | 8 Available Page / placement
constrained) context; campaign
context
KV bits-constrained | 31 Available Key-value/user
(quantized) signals with entropy
caps
KV not constrained | 9 Available Stable  contextual
keys or coarse
identifiers
Browser bits- | 11 Available Browser-provided
constrained (quantized) hints with coarse
granularity
Not available 20 Missing under | 3P-cookie / cross-
privacy site identifiers
removed

Table III. Privacy mechanisms and experimental parameterization.

Mechanism Motivation Implementation in | Key parameters
experiments
Signal loss Remove feature | Drop Binary on/off
bucket(s) not | 'features_not_availa

available after 3P | ble *
cookie deprecation

Quantization Limit per-user | Uniform binning in | bits € {12, 8, 6,
entropy / client | standardized space | 4}

hints; emulate 12-
bit constraints

Local DP feature | Obfuscate user- | Add Gaussian noise | € € {==,4,2,1,0.5}

noise level features before | N(0, 6"2), o=1/¢
modeling
DP aggregation Measurement APIs: | Cohort conversion | € € {4,1};
aggregated reports | counts + Laplace | granularity levels
+ DP noise noise
Federated / on- | Train models | FedAvg + secure | Rounds, client
device training | without exporting | aggregation fraction
(optional) raw features

B. Privacy Mechanisms and Experimental Factors

We implement four primary privacy mechanisms that capture common Privacy Sandbox constraints,
summarized in Table III. First, signal loss removes entire feature buckets to emulate unavailable cross-site
identifiers. Second, quantization maps bits-constrained features to a finite number of bins, representing client-
hint entropy limits. Third, local DP feature noise adds Gaussian noise with variance controlled by e,
representing user-level obfuscation. Fourth, DP aggregation builds cohort-level conversion rates and adds
Laplace noise to counts before training, emulating aggregated measurement APIs and reporting limits.

We vary privacy strength along three axes: (i) privacy budget € for noise mechanisms; (ii) aggregation
%ranularity (fine, mid, coarse cohorts) for DP aggregation; and (ii1) quantization bits for bits-constrained
eatures. In addition, we conduct an ablation over feature buckets to quantify which buckets contribute most
to utility, since privacy constraints often remove specific channels rather than adding uniform noise.
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C. Models

1) Conversion models for bidding. We use a linear logistic model trained with stochastic gradient descent
(SGD) as a strong and efficient baseline for rare-event prediction. The primary goal is to isolate the effect of
privacy mechanisms, so we use models that train quicﬁly and support repeated runs across the full privacy
sweep. Because DP noise and quantization distort calibration, we apply Platt scaling (1D logistic calibration
on a validation split) to produce calibrated probabilities suitable for bi(f:iing.

2) Uplift models. For incrementality estimation, we evaluate an S-learner with treatment-feature interactions
and a T-learner that trains separate models for treated and control populations. These choices reflect widely
used meta-learner baselines in uplift benchmarking [17]. Uplift is computed as the difference between
predicted treated and control outcome probabilities.

3) Aggregated learning. In the DP-aggregation setting, the learner observes only cohort-level conversion rates.
We therefore train a ridge regression model to predict noisy conversion rates from cohort-averaged features,
matching the learning constraint imposed by aggregated measurement.

D. Evaluation Metrics

1) Predictive metrics. For conversion prediction, we report AUC, log loss, and Brier score. AUC measures
ranking quality, while log loss and Brier score measure calibration-sensitive probability quality.

2) Utility proxy for bidding. To connect prediction to bidding, we simulate a second-price auction using a
market price (win_price) and a fixed conversion value per sale. For a given predicted probability p(x), we bid
b(x)=k p(x)-E[v] 'T%OO (CPM units), where « is chosen so that the win rate on the test set is approximately
10%. We then compute profit per 1k impressions and ROI = profit/spend as utility proxies.

3) Uplift metrics. For incrementality, we report AUUC (area under the uplift policy curve), a Qini-style
improvement over random targeting, and the expected incremental conversions when treating the top 10% of
users ranked by predicted uplift. Because our proxy uplift dataset includes potential outcomes y(0) and y(1),
these metrics can be computed exactly, enabling noise-free evaluation of policy value under different privacy
constraints.

V. Experimental Results and Analysis

All experiments are conducted with fixed random seeds and are fully reproducible. Table IV summarizes key
hyperparameters and runtime characteristics for a single run; all privacy configurations are generated by
sweeping €, quantization bits, and aggregation granularity.

Table IV. Implementation details and runtime (single run on the proxy datasets).

Component Model Key Data used Runtime
hyperparamet (single run)
ers

PrivateAd sale | SGDClassifier | max iter=5, 166,596 train / | 3.54s

model (logistic) alpha=le-5,L2 | 20,108 wval /

13,296 test

Calibration LogisticRegres | max_iter=200 | 20,108 val | included above

sion (1D Platt) points

Bid policy Value-based bid=m-p-E[val | E[value]=580.4 | O(N) scan

bidding ue]-1000 (m
chosen for win-
rate=0.1)

Uplift model | SGDClassifier | max_iter=30; 140,000 train / | 1.19s

(S-learner) (logistic) features=[x,t,x- | 60,000 test
t]

Uplift  model | 2x max_iter=30; same same order

(T-learner) SGDClassifier | separate
treated/control

A. PrivateAd: Feature Bucket Ablation under Signal Availability

We first quantify the contribution of each feature bucket to both predictive accuracy and bidding utility. Table
V reports an ablation study where models are trained with })rogressively richer feature sets. Using context-
only features, the model achieves AUC=0.738 with profit/1k=-14.8. Adding KV bits-constrained features
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improves both AUC and utility, and using all available buckets yields the best overall performance
(AUC=0.868, profit/1k=47.2). Notably, the “Not available” bucket has a disproportionately large impact on
utility: removing it reduces profit far more than it reduces AUC, illustrating that economic objectives are more
sensitive to missing high-value segmentation than rank-based metrics alone.

Table V. Feature bucket ablation on the PrivateAd proxy (sale prediction + bidding utility).

Setting NumPFeat AUC Profit per 1k | ROI
Context only 8 0.7383 -14.7556 -0.0775
Context + 139 0.8557 3.7934 0.0197
KV(bits)

Context + |48 0.8628 9.2189 0.0472
KV(bits) + KV

All - 159 0.8573 5.6311 0.0283
NotAvailable

All features 79 0.868 47.1908 0.2318

B. PrivateAd: Main Privacy Scenarios (Signal Loss, Quantization, DP Noise)

We next evaluate privacy mechanisms individually and in combination. Table VI reports detailed results for
six core scenarios. The baseline uses all feature buckets without quantization or DP noise. Signal loss
corresponds to dropping the ‘“Not available” bucket, emulating the removal of cross-site identifiers.
Quantization constrains bits-limited buckets to 8 bits. Local DP feature noise adds Gaussian noise with c=1/¢.
In our proxy experiment, baseline AUC is 0.868 with profit/1k 47.1908. Dropping the missing bucket reduces
profit/1k to 5.6311 (ROI 0.0283), an 8.4x drop, while AUC changes only slightly. This gap reflects that
missing features erase the ability to identify the highest-value tail, which strongly affects bid allocation at
fixed spend. Stronger DP noise (¢=1) reduces AUC to 0.7318 and profit/1k to 7.3435, demonstrating a clear
privacy—utility tradeoff.

Table VI. PrivateAd proxy results under privacy mechanisms (target win-rate=10%).

Scen | Dro | Quant | Epsi |[Nu | A | Log | Brie | Profit | Spend_ | ROI | Conv_

ario | pNA | Bits lon |mFe |U |Loss |r _per_ | per_1lk per_1
at C 1k k

Base | Fals | None | ©© 79 0.8 10.00 |0.00 |47.190 | 203.57 |0.23 |0.8273

line |e 68 | 74 11 8 98 18

Sign | True | None | ®® 59 0.8 {0.00 |0.00 |5.6311 | 19891 |0.02 |0.6017

al 57 |73 1 56 83

loss 3

(dro

p

NA)

Qua | Fals |8 oo 79 0.8 {0.00 |0.00 |46.666 |204.10 |0.22 | 0.8273

ntiza | e 67 |74 11 3 43 86

tion 7

8-bit

DP | Fals | None |4 79 0.8 10.00 |0.00 |50.401 [200.36 |0.25 |0.8273

nois | e 58 |75 11 5 91 15

e 7

=4

Qua | Fals |8 4 79 0.8 10.00 |0.00 |50.100 [200.67 |0.24 | 0.8273

nt8 + | e 56 |75 11 5 01 97

DP 2

e=4

DP | Fals | None |1 79 0.7 10.00 | 0.00 |7.3435 | 168.08 | 0.04 | 0.6017

nois | e 31 |79 11 1 37

e 8

e=1
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C. PrivateAd: Privacy-Utility Tradeoff Curves

To visualize privacy—utility tradeoffs, we sweep € and compare pure DP noise with a combined mechanism
that also quantizes bits-constrained features. Figure 3 plots AUC versus g, while Figure 4 plots profit/1k versus
€. Decreasing € reduces AUC in this sweep. Profit is non-monotonic because DP noise regularizes the model
at intermediate € and, under fixed win-rate bidding, changes in the score distribution alter which auctions are
selected and the average cost of won impressions. This result motivates reporting both predictive metrics and
economic metrics when evaluating privacy-preserving bidding systems.

Figure 3. Privacy-utility tradeoff (AUC) on PrivateAd proxy

A\.\\ —e— DP noise
0.85 1 Quant8+DP
= 0.80 A
2
o
-
L 0.75 A1
o
Q
b
— 0.70 4
L
-]
<

0.65 -

0.60 - U

o 4 2 1 0.5
Privacy budget € (larger = weaker privacy)
Figure 3. Privacy-utility tradeoff (AUC) on the PrivateAd proxy.
Figure 4. Privacy-utility tradeoff (profit) on PrivateAd proxy
60

—8— DP noise
®— Quant8+DP

50 A

40 A

30 A

Profit per 1k impressions (ROI proxy)

o 4 2 1 0.5
Privacy budget € (larger = weaker privacy)

Figure 4. Privacy-utility tradeoff (profit/1k) on the PrivateAd proxy.
Table VII. PrivateAd privacy sweep summary (AUC and profit/1k across €).

€ AUC (DP | Profit/1k (DP | AUC Profit/1k
noise) noise) (Quant8+DP) | (Quant8+DP)
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oo 0.868 47.1908 0.8677 46.6663
4 0.8587 50.4015 0.8562 50.1005
2 0.836 55.542 0.836 55.3103
1 0.7318 7.3435 0.7326 6.0439

0.5 0.6033 59.1728 0.6039 58.2173

D. PrivateAd: DP Aggregation and Measurement Granularity

Beyond feature-level obfuscation, modern measurement APIs often provide only aggregated reporting with
DP noise. We simulate this by aggregating conversions into cohorts and adding Laplace noise before training
a cohort-rate model. We vary granularity from fine (campaign+publisher+day) to coarse (day-level). Table
VIII reports the results. Figure 5 visualizes the AUC impact. The main pattern is that coarse aggregation
collapses signal: day-level cohorts remove most of the variation needed for rankin_%1 impressions, driving AUC

toward 0.5 and eliminating utility. Finer cohorts preserve more structure but still underperform individual-
level labels.

Figure 5. Effect of aggregation granularity on AUC (DP aggregation)

I =4
=1

AUC

Fine Mid Coarse
(camp+pub+day) (camp+day) (day)
Aggregation granularity
Figure 5. Effect of aggregation granularity on AUC under DP aggregation.

Table VIII. DP aggregation results on the PrivateAd proxy (Laplace noise on cohort counts).

Scena | Grou | Epsilo | Num | AUC | LogL | Brier | Profit | ROI | Conv
rio ping | n Coho 0SS _per_ _per_
rtsTr 1k 1k
ain
DP campa | 4 16654 | 0.530 [0.121 |0.013 |[41.24 |0.514 |0.225
Aggre |ign_id 9 4 5 5 28 8 6
ation | +publi
fine) | sher 1
d+day
DP campa | 4 48285 [ 0.462 |0.053 |0.003 |15.53 [0.193 |0.150
Aggre |ign_id 1 9 4 08 5 4
ation | +day
mid)
DP day 4 25 0.462 | 0.008 |0.001 |- - 0.150
Aggre 8 4 1 13.00 |0.159 |4
ation 83 2
%coars
e)
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DP campa | 1 16654 | 0.288 [0.319 [0.074 |41.25 |0.515 |0.225
Aggre |ign_id 9 2 3 8 23 6
gation | +publi
(fine) | sher i1

d+day
DP campa | 1 48285 [ 0.411 |0.186 |0.029 |41.11 [0.512 |0.225
Aggre |ign id 1 13 3 6
gation | +day
(mid)
DP day 1 25 0.462 | 0.008 |0.001 |- - 0.150
Aggre 8 3 1 1290 | 0.158 |4
gation 93 2
(coars
e)

E. Uplift: Incrementality Estimation under Privacy Constraints

We now turn to incrementality estimation. Table X reports AUUC, Qini, and policy value at top 10% for both
an S-learner and a T-learner baseline, along with several privacy-constrained configurations. In our prox
uplift dataset, the overall average uplift is 0.008917, and the baseline S-learner achieves AUUC 0.004464 wit
Qini 0.000005 and Policy@10% 0.0095. Under DP feature noise with e=4, AUUC increases to 0.004768 and
Qini to 0.000309, while Policy@10% decreases to 0.006167. These results show that signal loss, quantization,
and DP noise change uplift ranking differently from conversion prediction because uplift depends on
treatment-feature interactions; removing or obfuscating features changes the learned heterogeneity and the
ordering of high-uplift users.

Table IX. Uplift proxy results under privacy mechanisms (AUUC/Qini computed using potential outcomes).

Scenar | Learne | DropL | Quant | Epsilon | AUU | Qini Overal | Policy
io r astK Bits C 1Uplift | @10%
Baselin | S 0 None 00 0.0044 | 5e-06 0.0089 | 0.0095
e 64 17

Baselin | T 0 None 00 0.0043 | -7.3e- | 0.0089 | 0.01
e 86 05 17

Signal | S 4 None 00 0.0042 | - 0.0089 | 0.0095
loss 99 0.0001 |17

(drop 6

4)

Quanti | S 0 8 00 0.0045 | 4.3e-05 | 0.0089 | 0.01
zation 02 17

8-bit

DP S 0 None 4 0.0047 | 0.0003 | 0.0089 | 0.0061
noise 68 09 17 67

e=4

DP S 0 None 1 0.0046 | 0.0001 | 0.0089 | 0.01
noise 11 52 17

e=1

Quant8 | S 0 8 1 0.0046 | 0.0001 | 0.0089 | 0.0098
+DP 17 58 17 33

e=1

F. Uplift: Privacy-Utility Tradeoff Curves

Finally, we sweep ¢ for the uplift setting and compare DP noise alone with quantization plus DP. Figure 6
shows AUUC as a function ofp €. Table X summarizes AUUC and Qini across €. In this sweep, uplift metrics
vary less smoothly than conversion AUC with respect to €: small perturbations in interaction terms change the
ordering of users with similar estimated effects. This instability motivates experiment-friendly aggregation
designs that preserve causal evaluability under privacy constraints.
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Figure 6. Privacy-utility tradeoff for uplift (AUUC) on Uplift proxy
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Figure 6. Privacy-utility tradeoff for uplift (AUUC) on the Uplift proxy.
Table X. Uplift privacy sweep summary (AUUC and Qini across ¢).
€ AUUC (DP | Qini (DP | AUUC Qini
noise) noise) (Quant8+DP) | (Quant8+DP)

oo 0.004464 5e-06 0.004502 4.3e-05
4 0.004768 0.000309 0.004821 0.000362
2 0.00491 0.000452 0.004908 0.00045

1 0.004611 0.000152 0.004617 0.000158
0.5 0.004965 0.000507 0.004959 0.000501

V1. Discussion

A. Why AUC is misleading for bidding under privacy. A central finding across our experiments is the gap
between ranking metrics and economic utility. Signal loss removes features that identify high-value segments;
even when the remaining features preserve average ranking quality, the ability to concentrate spend on the
profitable tail vanishes. This pattern is visible when we remove the “Not available” bucket: the AUC decrease
1s small, but the ROI proxy drops sharply. Practically, this implies that offline evaluation for privacy-
preserving bidders prioritizes value-weighted metrics, calibration diagnostics, and policy simulations rather
than only AUC.

B. Quantization as both a constraint and a regularizer. Quantization is often viewed as a purely negative
constraint that reduces information. In our sweeps, quantization also acts as a regularizer and changes the
score distribution used by the bidding policy, which contributes to non-monotonic utility curves: the policy
ranks impressions by predicted probability while implicitly interacting with the cost distribution. When
deploying quantized signals (bits-limited browser hints), the bidding layer is re-tuned end-to-end and
calibration is revisited because quantization changes score distributions.

C. DP aggregation and the importance of granularity. Our DP aggregation experiments show that granularity
matters as much as €. When cohorts are too coarse, the model cannot learn heterogeneity and becomes near-
random. In real Privacy Sandbox systems, aggregation keys and report granularity are carefully designed to
balance privacy and utility. Our results support the view that meaningful optimization requires cohort keys
that retain at least campaign- and placement-level variation, and ﬂ%at purely time-based aggregates are
insufficient for bidding optimization.

D. Incrementality under privacy constraints. Uplift modeling depends on treatment interactions. In our
experiments, feature obfuscation preserves much of the marginal conversion-prediction performance yet
degrades uplift ranking because it removes cross-feature patterns that drive heterogeneous treatment effects.

COMPUTING INNOVATIONS AND APPLICATIONS
ISSN: 3068-5516 61

CIA



Supporting incrementality therefore requires aggregation designs that allow reporting by coarse segments or
interest groups rather than only by time windows.

E. Practical guidance and open questions. Based on our findings, we recommend (i) evaluating privacy-
preserving bidders with both predictive and economic metrics; (i) using calibration techniques and value-
weighted objectives; (iii) designing aggregation keys to preserve actionable heterogeneity; and (iv) treating
uplift estimation as a first-class requirement when designing measurement APIs. Open questions include how
to perform joint DP accounting across bidding and measurement, how to adaptively allocate privacy budgets
to thlg most decision-relevant signals, and how to combine federated training with DP aggregation in a unified
pipeline.

F. Limitations. Our proxy instantiations prioritize reproducibility and schema consistency rather than
matching every distributional detail of production advertising logs. The absolute metric values reported in this
manuscript therefore apply to the proxy datasets. The pipeline is implemented so that, once the official datasets
are accessible, the same experiments run by swapping the proxy generator for the official dataset loaders and
using the official feature buckets and labels. Additionaﬁ , we evaluate relatively simple linear models;
extending the analysis to stronger nonlinear models (gradient boosting and deep CTR/CVR networks) under
DP constraints remains future work.

VII. Conclusion

We presented a reproducible empirical study of privacy-preserving advertising under Privacy Sandbox-style
constraints, focusing on bid optimization and incrementality estimation. Using schema-consistent experiments
inspired by CriteoPrivateAd and the Criteo Uplift dataset, we quantified how signal loss, quantization, DP
feature noise, and DP aggregation affect both predictive accuracy and downstream utility. The results highlight
that privacy constraints produce large utility losses even when standard predictive metrics change little, and
that aggregation granularity is a critical design lever for measurement APIs. Our artifacts include six figures
and eleven tables with detailed comparisons, and all results can be reproduced exactly using the provided
scripts. We hope this work helps bridge the gap between formal privacy mechanisms and practical advertising
system design.

Appendix A. Reproducible Experimental Protocol

A.5 Extending to the official datasets. With access to the full CriteoPrivateAd and Criteo Uplift releases, the
same pipeline runs on the official datasets by replacing the proxy generator with dataset loaders and using the
official feature buckets and labels. The privacy transformations (bucket removal, quantization, DP noise, and
cohort aggregation) are implemented as data-source-agnostic modules. This manuscript does not claim that
proxy results match official-dataset results; running the full sweep on the official data produces the definitive
values for that setting.

A 4 Bidding evaluation under a fixed win-rate. A key design choice is how to compare bidding policies fairly.
If a privacy mechanism reduces predicted probabilities, a naive value-based bidder will spend less, which can
look like an “improvement” in ROI simply because fewer auctions are entered. To avoid this confound, we
tune a single multiplicative factor k for each policy such that the win rate on the test set matches a fixed target
(10% in our experiments). This is done by a simple monotone binary search because win(x) = 1 {k-p-E[v]- 1000
> win_price} is monotone in k. Profit/1k and ROI are then computed on the won set.

A.3 DP aggregation (measurement-style learning). To emulate aggregated reporting, we construct cohorts by
a grouping key g (e.g., campaign_id + publisher id + day). For each cohort, we compute impressions n_g
and conversions kg and then release noisy statistics:

i, g=n g+ Laplace(0, 1/6), k g=k g+ Laplace(0, 1/¢).
We form a noisy conversion rate ¥ g = clip(k_g/max(fi_g, 1), 0, 1). A cohort-level model then predicts T g
from cohort-averaged features (we use context features). Algorithm 2 shows the procedure.

Algorithm 2: DP aggregation training

Input: impression-level data (x i, y_1), cohort key g(i), privacy budget €
1: For each cohort g:n g« X i l1{g(i)=g},k g« X iy i-1{g(i)=g}
2: Add DP noise: fi_g < n_g+ Lap(0,1/g), k g« k g+ Lap(0,1/¢)

3: Compute noisy rate: T g « clip(k_g/max(ii_g,1), 0, 1)

4: Compute cohort features: X_g «— mean_{i:g(i)=g}(x_1)

5: Fit regression model f g = f(X_g)

Output: cohort-rate predictor

Algorithm 1 summarizes the transformation in pseudocode.
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Algorithm 1: Feature transformation with quantization and DP noise
Input: raw feature matrix X, bits b (or None), privacy budget € (or )
1: Standardize: X «— (X — mean_train) / (std_train + 1e—6)

2: If b is not None:

3: Clip X to [-3, 3]

4: Map each feature to nearest bin among L = 2”b levels in [3, 3]

5: If € 1s finite:

6: Add Gaussian noise: X «— X + Normal(0, (1/£)"2)

Output: transformed feature matrix X

A.2 Feature transformation mechanisms. The privacy mechanisms are implemented as deterministic
transformations plus randomness controlled by € and a fixed seed. The overall transformation pipeline is: (1)
optional feature bucket removal (signal loss), (2) standardization using training-set mean and variance, (3)
optional quantization for bits-constrained buckets, and (4) optional DP feature noise. Quantization uses
uniform binning on the standardized domain clipped to [—3, 3], which approximates an entropy cap by
restricting each feature to 2”b discrete values. DP feature noise uses Gaussian noise with ¢ = 1/¢ on
standardized features; while this is not a full accounting of sensitivity for each feature, it provides a
transparent, reproducible knob to study privacy—utility tradeoffs.

For the Uplift proxy, each row represents a user with features x, a randomized treatment assignment t, and
Eotential outcomes y(0) and y(1). Base outcome probabilities are generated by a logistic model, and a
eterogeneous treatment effect 1(x) is generated by a second logistic model that depends on x. Observed
outcomes follow the standard RCT semantics: y = y(1) if t=1 else y(0). Because potential outcomes are stored,
uplift policy evaluation can be computed exactly without requiring noisy inverse-propensity weighting.

A.1 Proxy data generation (schema-consistent). For the PrivateAd proxy, each row represents an impression
opportunity with (i) feature buckets matching the CriteoPrivateAd schema (context, KV bits-constrained, KV
not constrained, browser bits-constrained, and not-available), (ii) a simulated auction market price (win_price)
and advertiser bid, and (iii) a rare conversion label (“sale”) generated from a latent logistic model. In order to
evaluate counterfactual bidding policies, we generate a sale potential label that represents the conversion
outcome if the impression is won. The observed sale label is then sale = sale_potential - 1{bid > win_price}.
This construction ensures that different bidding policies can be compared by re-evaluating wins against the
same market prices while keeping user response stochasticity fixed.

This appendix provides a concise but complete recipe to reproduce every table and figure reported in the paper.
The intent is to make the empirical findings auditable: a reader should be able to regenerate the proxy datasets,
apply the privacy mechanisms, train the models, and obtain the same numerical values (up to floating-point
determinism) without requiring any external services. The scripts used in our runs fix all random seeds and
report the exact configuration used for each table.

Appendix B. Sensitivity Analyses and Practical Notes

B.4 Mapping experiments to real Privacy Sandbox APIs. Our experimental factors correspond to practical
API constraints. Signal loss mirrors the disappearance of cross-site identifiers. Quantization approximates
entropy caps applied to browser-provided hints. DP feature noise represents local randomization or on-device
perturbation. DP aggregation corresponds to the release of only aggregated, noisy conversion reports via
measurement APIs. While our proxy implementation abstracts away some protocol details (e.g., contribution
bounding, privacy budget accounting across multiple reports), the core algorithmic implication remains:
optimizing a bidder or an incrementality pipeline requires explicit modeling of which signals survive, at what
granularity, and with what noise level.

B.3 Interpreting non-monotonic privacy—utility curves. In several sweeps we observe that utility is not strictly
monotonic in € for three reasons. First, noise regularizes the model and reduces overfitting, improving ranking
on out-of-sample data in parts of the sweep. Second, when we fix win rate, changes in the score distribution
lead to different auction selections and change the average cost of won impressions, which shifts the utility
proxy. Third, finite-sample effects and stochastic optimization introduce randomness in the ordering of
impressions with very similar scores. We report single-seed results without confidence intervals; repeating the
sweep with multiple seeds and reporting intervals quantifies this variance.
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B.2 Calibration and rare-event stability. Rare-event prediction under DP noise is particularly sensitive to
calibration. If DP noise increases score variance, uncalibrated models become overconfident or
underconfident, leading to inefficient bidding. Our pipeline applies Platt scaling on a validation set because it
is simple, fast, and robust. In production, advertisers use multi-level calibration (per campaign, per inventory
segment) or incorporate value-weighted losses that directly optimize profit. When labels are available only
through aggregated feedback, calibration is performed using aggregated feedback rather than per-event labels;
we do not address this setting and leave it as an open research direction.

As shown in Table XI, the baseline policy is profitable at low win rates (e.g., 5%), where it concentrates on
the highest predicted value impressions, but becomes unprofitable at higher win rates (e.g., 15-20%), where
the model must bid on more marginal inventory to meet the spend target. This phenomenon is not specific to
our proxy dataset; it is a general consequence of diminishing returns in auction markets. When deploying
privacy-preserving bidders, practitioners should therefore tune x (or budget) jointly with the privacy
mechanism, rather than reusing a multiplier calibrated in a less constrained setting.

B.1 Sensitivity to spend or win-rate constraints. A bidder’s observed ROI depends on how aggressively it
participates in auctions. Under value-based bidding, increasing the multiplier « raises the win rate and spend,
and it also includes more marginal inventory with lower expected conversion value per cost. This effgct is
amplified in privacy-preserving settings because obfuscation blurs distinctions among mid- and low-quality
impressions. Therefore, privacy—utility comparisons are most meaningful when policies are normalized by a
common budget or win-rate. In the main paper we fix the target win rate at 10%. Table XI reports a sensitivity
sweep for the baseline model at several win-rate targets.

Table XI. Sensitivity of baseline bidding utility to the target win-rate (PrivateAd proxy).

Target win-rate Spend/1k Profit/1k ROI Conv/1k

0.05 98.2857 55.9283 0.569 0.4513

0.1 203.5798 47.1908 0.2318 0.8273

0.15 313.5872 -44.3939 -0.1416 0.9025

0.2 430.5815 -161.3882 -0.3748 0.9025
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